2,681 research outputs found

    Роль релігійних цінностей у процесі формування права

    Get PDF
    У контексті з’ясування основних пріоритетів розвитку права розглядається проблема ролі релігійних цінностей як основи розвитку права. Показано взаємодію релігії і права в умовах мінливої динаміки демократизації українського суспільства, обгрунтовано пріоритетні моральні принципи для побудови фундаменту, на якому грунтується і завдяки якому розвивається право. Ключові слова: релігійні цінності, цінності права, мораль.В контексте определения основных приоритетов развития права рассматривается проблема роли религиозных ценностей как базиса развития права. Показано взаимодействие религии и права в условиях изменчивой динамики демократизации украинского общества, обоснованы приоритетные моральные принципы для строительства фундамента, на котором основывается и благодаря которому развивается право. Ключевые слова: религиозные ценности, ценности права, мораль.It is reviewed the issue of rule of religious values as a basis and grounds for law evolution in the context of definition of its main priorities. It is shown the correlation between the religion and the law in circumstances of possible dynamic of Ukrainian society democratization. It is обосновано the priority moral principles for developing pivot as a ground of law evolution. Key words: «religion values», «values of law», «moral»

    Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction.

    Get PDF
    Memory disorders are a common consequence of cerebrovascular accident (CVA). However, uncertainties remain about the exact anatomical correlates of memory impairment and the material-specific lateralization of memory function in the brain. We used lesion-symptom mapping (LSM) in patients with first-time CVA to identify which brain structures are pivotal for verbal and nonverbal memory and to re-examine whether verbal and nonverbal memory functions are lateralized processes in the brain. The cognitive performance of a relatively large cohort of 114 patients in five classic episodic memory tests was analysed with factor analysis. Two factors were extracted that distinguished the verbal and nonverbal components of these memory tests, and their scores were subsequently tested for anatomical correlates by combining univariate and multivariate LSM. LSM analysis revealed for the verbal factor exclusively left-hemispheric insular, subcortical and adjacent white matter regions and for the nonverbal factor exclusively right-hemispheric temporal, occipital, insular, subcortical and adjacent white matter structures. These results corroborate the long-standing hypothesis of a material-specific lateralization of memory function in the brain and confirm a robust association between right temporal lobe lesions and nonverbal memory dysfunction. The right-hemispheric correlates for the nonverbal aspects of episodic memory include not only classic memory structures in the medial temporal lobe but also a more distributed network that includes cortical and subcortical structures also known for implicit memory processes

    Ten simple rules for hosting artists in a scientific lab

    Get PDF
    Hosting an artist in a scientific lab is likely a new experience for many scientists in the natural and engineering sciences, and perhaps also for many artists, yet it can be a very beneficial experience for both parties [1]. “Art and science are in a tension that is most fruitful when these disciplines observe and penetrate each other and experience how much of the other they themselves still contain” [2]. During our science and art collaborations in the last years, we have learned what connects and what separates our disciplines, how different yet common our worlds of working and thinking are, and how stimulating such collaborations can be. Although scientists and artists belong to two different cultural worlds, many share research as a congruent method to explore and understand the world around us. Often, scientific and artistic work spaces are indistinguishable as they are full of equipment, materials, tools, and computers to run experiments and analyze data [3,4]. Science and art are fundamentally connected through their focus on creativity [5]. Also, both scientists and artists deliberately venture into the public realm in the spirit of Hannah Arendt: “Humanity is never won in loneliness and never by handing one’s work over to the public. Only if you take your life and person[ality] into the venture of the public realm, will you reach [humanity]” [6]. At the most fundamental level, science and art both try to understand the world around us and to guide society to recognize and solve problems. Artistic and scientific research may also have much more in common than one expects at first sight: They both involve years of schools and personal development, they both involve trial and error, and the sharing of results with different communities. However, transdisciplinary cooperation requires openness, a willingness to take risks, the ability for self-reflection, respect, and esteem for the other culture as well as a lot of appreciative listening from both parties [7,8]. Our paper thus intends to serve as a practical guide for both, artists-in-residence and the hosting scientific lab to easier cross borders, to better collaborate, to better learn from each other, and to sustainably bridge the different cultures of science and the arts. Our discussion starts at the point where a decision for such an interaction has already taken place. Still wondering if this is for you? There is much to gain for both sides. For the scientists, for example, this interaction can be a source of new ideas and questions, offering new points of view. Some of us also felt that this interaction offered training in explaining research in clear, simple language, and provided opportunities for interfacing with the science-curious public in a curated context. For the artists, this can be about learning new tools, methods, and approaches and about the specific topics on which a lab works

    GEMS: Galaxy Evolution from Morphologies and SEDs

    Full text link
    GEMS, Galaxy Evolution from Morphologies and SEDs, is a large-area (800 arcmin2) two-color (F606W and F850LP) imaging survey with the Advanced Camera for Surveys on HST. Centered on the Chandra Deep Field South, it covers an area of ~28'x28', or about 120 Hubble Deep Field areas, to a depth of m_AB(F606W)=28.3 (5sigma and m_AB(F850LP)=27.1 (5sigma) for compact sources. In its central ~1/4, GEMS incorporates ACS imaging from the GOODS project. Focusing on the redshift range 0.2<=z<=1.1, GEMS provides morphologies and structural parameters for nearly 10,000 galaxies where redshift estimates, luminosities and SEDs exist from COMBO-17. At the same time, GEMS contains detectable host galaxy images for several hundred faint AGN. This paper provides an overview of the science goals, the experiment design, the data reduction and the science analysis plan for GEMS.Comment: 24 pages, TeX with 6 eps Figures; to appear in ApJ Supplement. Low resolution figures only. Full resolution at http://zwicky.as.arizona.edu/~rix/Misc/GEMS.ps.g

    Barred Galaxies in the Abell 901/2 Supercluster with STAGES

    Full text link
    We present a study of bar and host disk evolution in a dense cluster environment, based on a sample of ~800 bright (MV <= -18) galaxies in the Abell 901/2 supercluster at z~0.165. We use HST ACS F606W imaging from the STAGES survey, and data from Spitzer, XMM-Newton, and COMBO-17. We identify and characterize bars through ellipse-fitting, and other morphological features through visual classification. (1) We explore three commonly used methods for selecting disk galaxies. We find 625, 485, and 353 disk galaxies, respectively, via visual classification, a single component S'ersic cut (n <= 2.5), and a blue-cloud cut. In cluster environments, the latter two methods miss 31% and 51%, respectively, of visually-identified disks. (2) For moderately inclined disks, the three methods of disk selection yield a similar global optical bar fraction (f_bar-opt) of 34% +10%/-3%, 31% +10%/-3%, and 30% +10%/-3%, respectively. (3) f_bar-opt rises in brighter galaxies and those which appear to have no significant bulge component. Within a given absolute magnitude bin, f_bar-opt is higher in visually-selected disk galaxies that have no bulge as opposed to those with bulges. For a given morphological class, f_bar-opt rises at higher luminosities. (4) For bright early-types, as well as faint late-type systems with no evident bulge, the optical bar fraction in the Abell 901/2 clusters is comparable within a factor of 1.1 to 1.4 to that of field galaxies at lower redshifts (5) Between the core and the virial radius of the cluster at intermediate environmental densities, the optical bar fraction does not appear to depend strongly on the local environment density and varies at most by a factor of ~1.3. We discuss the implications of our results for the evolution of bars and disks in dense environments.Comment: accepted for publication in ApJ, abstract abridged, for high resolution figures see http://www.as.utexas.edu/~marinova/STAGES/STAGES_bars.pd

    Squaric Ester-Based, pH-Degradable Nanogels:Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators

    Get PDF
    Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.</p

    Genetic diversity of Anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development

    Get PDF
    The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several pathogens of veterinary and human medical importance. An understanding of the diversity of Anaplasma major surface proteins (MSPs), including those MSPs that modulate infection, development of persistent infections, and transmission of pathogens by ticks, is derived in part, by characterization and phylogenetic analyses of geographic strains. Information concerning the genetic diversity of Anaplasma spp. MSPs will likely influence the development of serodiagnostic assays and vaccine strategies for the control of anaplasmosi

    Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry

    Get PDF
    Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken

    History of Galaxy Interactions and their Impact on Star Formation over the Last 7 Gyr from GEMS

    Get PDF
    We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z~0.24--0.80 (lookback time T_b~3--7 Gyr) using 3698 (M*>=1e9 Msun) galaxies with GEMS HST, COMBO-17, and Spitzer data. Our results are: (1) Among 790 high mass (M*>=2.5e10 Msun) galaxies, the visually-based merger fraction over z~0.24--0.80, ranges from 9%+-5% to 8%+-2%. Lower limits on the major and minor merger fractions over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first approximate empirical estimate of the frequency of minor mergers at z<1. For a visibility timescale of ~0.5 Gyr, it follows that over T_b~3--7 Gyr, ~68% of high mass systems have undergone a merger of mass ratio >1/10, with ~16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous `major or minor' mergers. The mean merger rate is a few x 1e-4 Gyr-1 Mpc-3. (2) We compare the empirical merger fraction and rate for high mass galaxies to a suite of Lambda CDM-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of five dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ~3698 M*>=1e9 Msun galaxies, we find that the mean SFR of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z~0.24--0.80. Visibly merging systems only account for less than 30% of the cosmic SFR density over T_b~3--7 Gyr. This suggests that the behavior of the cosmic SFR density over the last 7 Gyr is predominantly shaped by non-interacting galaxies.Comment: Accepted for Publication in the Astrophysical Journal. 17 pages of text, 21 figures, 3 tables. Uses emulateapj5.st
    corecore