

EN05.02.05: Materials for concentrated solar energydriven sulphur-based thermochemical cycles

<u>Christos Agrafiotis^{1*}</u>, Vamshi Krishna Thanda¹, Dennis Thomey¹, Lamark de Oliveira¹, Lutz Mevißen², Hiroki Noguchi³, George Karagiannakis⁴, Martin Roeb¹, Christian Sattler^{1, 5}

- 1. German Aerospace Center (DLR), Institute of Future Fuels, Cologne, Germany.
- 2. RWE Generation SE, Duisburg, Germany
- 3. Japan Atomic Energy Agency, Oarai-Machi, Japan
- 4. Centre for Research & Technology. Hellas/Chemical Processes & Energy Research Institute, (CERTH/CPERI), Thessaloniki, Greece

<nowledge for Tomorrow

5. Faculty of Mechanical Science and Engineering, TU Dresden, Dresden, Germany

*Christos.Agrafiotis@dlr.de

Sulphur-based thermochemical cycles

(a) the Hybrid Sulphur cycle

(b) the Sulphur-Iodine cycle

	Reaction	Temperature	Heat Oxygen	H ₂ O	Hydrogen H ₂
Sulphuric acid	$H_2SO_4(aq) \rightarrow H_2O(g) + SO_3(g)$	450-500°C	800-1200 °C		
decomposition	$SO_3(g) \rightarrow SO_2(g) + \frac{1}{2}O_2(g)$	700-950°C		H20 S02	
Bunsen reaction	$2H_2O + SO_2 + I_2 \rightarrow H_2SO_4 + 2HI$	25-125°C	$H_2SO_4 \Rightarrow 1/2 O_2 + 1$	$H_2O + SO_2$ $SO_2 + 2 H_2O + I_2 \Rightarrow H_2SO_4 + 2 HI$	2 HI = I ₂ +H ₂
HI decomposition	$2HI \rightarrow I_2 (g) + H_2 (g)$	127-727°C		H ₂ SO ₄	

Water

(c) the solid Sulphur cycle

			$+ O_2 \uparrow$		SO ₂
	Reaction	Temperature			
Sulphuric acid	$2H_2SO_4(aq) \rightarrow 2H_2O(g) + 2SO_3(g)$	450-500°C	Sulfuric Acia Decompositio	d SO ₂ on Disproportionation	Sulfur Combustion
decomposition	$2SO_3(g) \rightarrow O_2(g) + 2SO_2(g)$	700-950°C		H ₂ SO ₄	
Disproportionation	$2H_2O(I) + 3SO_2(g) \rightarrow 2H_2SO_4(aq) + S(s)$	50-200°C			Sulfur
Sulphur Combustion	$S(I) + O_2(g) \rightarrow SO_2(g)$	500-1500°C		H, SO,	

DLR: Solar particle receivers technology; Centrifugal receiver; solid particles streams as HTF

- Direct absorption \Rightarrow high efficiency and energy density
- Direct storage; receiver and storage at ambient pressure
- No freezing, no decomposition, low security requirements
- Can be "dirt cheap": sand, ceramic proppants (sintered bauxite)
- SO₃ splitting catalysts: oxides (Fe/Cu/Mn-based)

Demonstrated particle temperature of $T = 965^{\circ}C$ upon exiting the receiver

M. Ebert et al., AIP Conference Proceedings 2126, (2019) 030018.

Solar-driven SO₃ splitting reactor (H₂SO₄ decomposer) concepts downstream of solar receiver

"Catalytic" Fe/Cu/Mn-modified bauxite proppants; moving catalyst bed, direct contact with SO₃ vapours (SO₃ \rightarrow SO₂ + O₂); indirect evaporation of H₂SO₄ in SO₃ and steam downstream in a counter-flow cascade-like configuration.

Non-catalytic, cheap, "plain" bauxite proppants; shell-and-tube sulphuric acid evaporator/SO₃ splitting reactor cascade; indirect heat transfer between the particles on the shell-side and fluid (H_2SO_4 vapours) on the tube-side, which therein will come into contact with a non-moving catalyst bed.

In either case, particles can be fed from the hot storage tank off-sun and upon completion of evaporation, recirculated through the cold storage tank to the receiver on the top of the tower for a new cycle.

SO₃ splitting (H₂SO₄ decomposition) catalytic tests Lab set-up for long-term catalyst testing

- Security system for 24 hours operation.
- Product gas analysis: iodometry, O₂ sensor.
- H_2SO_4 flow rates tested: 0.1/0.25/0.5 ml/min.
- Temperature: 800, 850, 900, 950°C.
- Testing times: from 100 up to > 1000 h.

SO₃ splitting: long-term catalytic activity (> 1000 h), 850°C

Cu,Mn-oxide modified bauxite-based proppants were synthesized.

They exhibit:

- High, constant conversion, 60-80% (Eq. conv.=89 %).
- < 15% performance loss after > 1000 h on stream.

CSE-relevant properties

Cu,Mn-modified bauxite proppants exhibited **better absorbtance** than **commercial ones** and minor absorptance reduction after 1000 h on-stream exposure.

Yet, lower flowability ("sphericity"), mechanical strength and attrition resistance (creating "dust").

As-received After reaction

Expensive to be produced in pilot quantities.

Indirectly heated reactor concept adopted

- Moving bed of inexpensive, non-catalytic commercial bauxite proppants (HTF) on the shell-side.
- Stationary Fe₂O₃ catalyst-coated foams inside the tubes (high catalyst loading, low pressure drop).
- Parametric experiments with same specimen, accumulating total 362 h on-stream.
- Near-equilibrium conversion at 850°C within a range of H₂SO₄ flow rates and fully reproducible.

Sulphuric acid splitting reactor: Overview of setup at DLR, Juelich

- Commercial bauxite particles (HTF) driven by gravity, flow rate controlled via a screw feeder.
- Electrical particle heater provides for hot particles.
- Evaporation, thermal and catalytic H₂SO₄ decomposition in one reactor.
- SiC foams coated with Fe₂O₃ catalyst for SO₃ splitting.
- SiC non-coated foams for thermal-only H₂SO₄ decomposition.

0

Lab-scale prototype reactor for sulphuric acid splitting

Stainless steel tubes

SiSiC tubes

Conclusions - Next steps

- The demonstrated potential of centrifugal particle receivers for providing hot particle streams of T ~ 950°C opens new possibilities for performing endothermic chemical reactions like the common SO₃ splitting step of all sulphur-based thermochemical cycles downstream of the solar receiver.
- Direct and indirect heat transfer concepts between the moving hot particles stream and the reactant materials have been assessed; Cu-Mn-oxide modified bauxite proppants and Fe₂O₃-based structures have been extensively and long-term studied as SO₃ splitting catalysts, respectively.
- Fe₂O₃-coated SiC foams achieved near-equilibrium SO₃ conversion (~ 89 %), at a temperature of 850°, in principle reachable with hot particle streams.
- Construction of a lab-scale indirect contact catalytic reactor is almost completed and eventual proof-of-concept test is foreseen soon.

Thank you for your attention!

www.pegasus-project.eu

Co-funded by the Horizon 2020 Framework Programme of the European Union

