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Sulphur-based thermochemical cycles
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• Direct absorption  high efficiency and energy density

• Direct storage; receiver and storage at ambient pressure

• No freezing, no decomposition, low security requirements

• Can be “dirt cheap”: sand, ceramic proppants (sintered bauxite)

DLR: Solar particle receivers technology; Centrifugal 

receiver; solid particles streams as HTF

Demonstrated particle temperature of T = 965°C upon exiting the receiver
M. Ebert et al., AIP Conference Proceedings 2126, (2019) 030018. 
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• SO3 splitting catalysts: oxides (Fe/Cu/Mn-based)



Solar-driven SO3 splitting reactor (H2SO4 decomposer) 

concepts downstream of solar receiver 
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“Catalytic” Fe/Cu/Mn-modified

bauxite proppants; moving catalyst

bed, direct contact with SO3

vapours (SO3 →SO2 + O2); indirect

evaporation of H2SO4 in SO3 and

steam downstream in a counter-flow

cascade-like configuration.

In either case, particles can be fed from the hot

storage tank off-sun and upon completion of

evaporation, recirculated through the cold

storage tank to the receiver on the top of the

tower for a new cycle.

Non-catalytic, cheap, “plain”

bauxite proppants; shell-and-tube

sulphuric acid evaporator/SO3

splitting reactor cascade; indirect

heat transfer between the particles

on the shell-side and fluid (H2SO4

vapours) on the tube-side, which

therein will come into contact with a

non-moving catalyst bed.
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SO3 splitting (H2SO4 decomposition) catalytic tests 

• Security system for 24 hours operation. 

• Product gas analysis: iodometry, O2 sensor.

• H2SO4 flow rates tested: 0.1/0.25/0.5 ml/min.

• Temperature: 800, 850, 900, 950°C.

• Testing times:  from 100 up to > 1000 h.

Lab set-up for long-term catalyst testing 
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SO3 splitting: long-term catalytic activity ( > 1000 h), 850oC

They exhibit:

• High, constant 

conversion, 60-80% 

(Eq. conv.=89 %). 

• < 15% performance 

loss after > 1000 h on 

stream.

Cu,Mn-oxide modified 

bauxite-based proppants 

were synthesized. 
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CSE-relevant properties
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Yet, lower flowability 

(“sphericity”), mechanical 

strength and attrition 

resistance (creating “dust”).

Cu,Mn-modified bauxite 

proppants exhibited better 

absorbtance than 

commercial ones and minor 

absorptance reduction after 

1000 h on-stream exposure. 
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Expensive to be produced 

in pilot quantities.

> 2021 MRS Spring Meeting & Exhibit, April 17th – 23rd, 2021 



0

2

4

6

8

0 20 40 60 80 100

D
P

 (
m

b
a
r)

Actual Flow (m³/sec)

Unoated SiSiC Foam
Coated SiSiC Foam, 44% Fe₂O₃

SO2

O2

H2O

SO
3 

+ 
H

2O

H2SO4

(25°C)

P
ar

ti
cl

ef
lo

w

Hot Particles
(900°C)

Transport back to 
Centrifugal Receiver

Hot 
Particle
Storage

Cold Particles
(100°C) 

Cold 
Particle
Storage

(850°C)

DLR.de  •  Slide 8 > 2021 MRS Spring Meeting & Exhibit, April 17th – 23rd, 2021 

• Parametric experiments 

with same specimen, 

accumulating total 362 

h on-stream. 

• Near-equilibrium 

conversion at 850oC 

within a range of 

H2SO4 flow rates and 

fully reproducible.

Indirectly heated reactor concept adopted
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• Moving bed of inexpensive, non-catalytic commercial bauxite

proppants (HTF) on the shell-side.

• Stationary Fe2O3

catalyst-coated foams

inside the tubes (high

catalyst loading, low

pressure drop).
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Sulphuric acid splitting reactor: Overview of setup at DLR, Juelich
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• Commercial bauxite particles 

(HTF) driven by gravity, flow rate 

controlled via a screw feeder.

• Electrical particle heater provides 

for hot particles.

• Evaporation, thermal and 

catalytic H2SO4 decomposition in 

one reactor.

• SiC foams coated with Fe2O3

catalyst for SO3 splitting.

• SiC non-coated foams for 

thermal-only H2SO4

decomposition.
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Lab-scale prototype reactor for sulphuric acid splitting
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Stainless steel

tubes

SiSiC

tubes



• The demonstrated potential of centrifugal particle receivers for providing hot

particle streams of T ~ 950oC opens new possibilities for performing

endothermic chemical reactions like the common SO3 splitting step of all

sulphur-based thermochemical cycles downstream of the solar receiver.

• Direct and indirect heat transfer concepts between the moving hot particles

stream and the reactant materials have been assessed; Cu-Mn-oxide modified

bauxite proppants and Fe2O3-based structures have been extensively and

long-term studied as SO3 splitting catalysts, respectively.

• Fe2O3-coated SiC foams achieved near-equilibrium SO3 conversion ( 89 %),

at a temperature of 850o, in principle reachable with hot particle streams.

• Construction of a lab-scale indirect contact catalytic reactor is almost

completed and eventual proof-of-concept test is foreseen soon.

Conclusions - Next steps
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Thank you for your attention!

Co-funded by the Horizon 2020
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