365 research outputs found

    Four stellar populations and extreme helium variation in the massive outer-halo globular cluster NGC 2419

    Full text link
    Recent work revealed that both the helium variation within globular clusters (GCs) and the relative numbers of first and second-generation stars (1G, 2G) depend on the mass of the host cluster. Precise determination of the internal helium variations and of the fraction of 1G stars are crucial constraints to the formation scenarios of multiple populations (MPs). We exploit multi-band Hubble Space Telescope photometry to investigate MPs in NGC 2419, which is one of the most-massive and distant GCs of the Galaxy, almost isolated from its tidal influence. We find that the 1G hosts the ~37% of the analyzed stars, and identified three populations of 2G stars, namely 2GA, 2GB, and 2GC, which comprise the ~20%, ~31% and ~12% of stars, respectively. We compare the observed colors of these four populations with the colors derived from appropriate synthetic spectra to infer the relative helium abundances. We find that 2GA, 2GB, and 2GC stars are enhanced in helium mass fraction by deltaY ~0.01, 0.06, and 0.19 with respectto 1G stars that have primordial helium (Y=0.246). The high He enrichment of 2GC stars is hardly reconcilable with most of the current scenarios for MPs. Furthermore, the relatively larger fraction of 1G stars (~37%) compared to other massive GCs is noticeable. By exploiting literature results, we find that the fractions of 1G stars of GCs with large perigalactic distance are typically higher than in the other GCs with similar masses. This suggests that NGC 2419, similarly to other distant GCs, lost a lower fraction of 1G stars.Comment: 10 pages, 8 figures, submitted to MNRAS January 22n

    Enhancement of the mode purity of shear horizontal mode of a thickness-shear transducer through design changes

    Get PDF
    In ultrasonic guided waves, arrays of thickness-shear piezoelectric transducers are often used to generate Lamb and shear-horizontal waves in plates and longitudinal/torsional waves in pipes. The shear-horizontal modes (torsional modes in pipes) are particularly useful for guided wave testing. Although the ultrasonic output of such transducers are well known both numerically and experimentally, few results are available in the literature regarding the influence of geometry, electrode layout and materials on the ultrasonic output of the transducer: in particular, the influence of those parameters on the mode purity of the generated shear horizontal mode in plates requires further investigation. Numerical simulations with finite element modelling (Comsol Multiphysics) have been conducted on a thickness-shear transducer on a plate to understand the influence of these parameters. The study has been conducted both in frequency domain and time domain: the former was used to calculate the frequency response function of the transducer-waveguide system while the latter was used to verify the proportionality between different modes. Different configurations of the transducers have been designed and tested numerically, and the in- and out-of-plane displacements generated are compared for all the three configurations. The effect of geometry and electrode layout are at first assessed in terms of purity of the shear horizontal mode; the most performing configuration is then further modified to enhance the amplitude and the signal to noise ratio of the generated mode. Design changes can then be predicted and suggested

    A MEC-based Extended Virtual Sensing for Automotive Services

    Get PDF
    Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.This work was supported by the European Commission through the H2020 5G-TRANSFORMER project (Project ID 761536). The work of Christian Vitale was also supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for Euro-pean Programmes, Coordination, and Development

    A MEC-based Extended Virtual Sensing for Automotive Services

    Get PDF
    Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.This work was supported by the European Commission through the H2020 5G-TRANSFORMER project (Project ID 761536). The work of Christian Vitale was also supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for Euro-pean Programmes, Coordination, and Development

    Short GRBs at the dawn of the gravitational wave era

    Get PDF
    We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep ϕ(L)La\phi(L)\propto L^{-a} with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the ϕ(L)\phi(L) and ψ(z)\psi(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3×1052\times10^{52} erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr1^{-1} should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: θjet\theta_{jet}~3-6 deg. Our luminosity function implies an average luminosity L~1.5×1052\times 10^{52} erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB "orphan" afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy & Astrophysics. Figure 5 and angle ranges corrected in revised versio

    Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress

    Get PDF
    Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens. Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg 121, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content compared to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg 121. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni, uptaking the metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to reduce Ni uptake by potentially contaminated matrices

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice

    Get PDF
    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive
    corecore