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Abstract

Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult
population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean
population and in a mouse model.

Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen
LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under
investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/
c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using
RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs.

Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and
frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy
reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity
was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients’ sera. Simulating
LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2
and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3
epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell
peptides.

Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays
common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived
LTP.

Citation: Gadermaier G, Hauser M, Egger M, Ferrara R, Briza P, et al. (2011) Sensitization Prevalence, Antibody Cross-Reactivity and Immunogenic Peptide Profile
of Api g 2, the Non-Specific Lipid Transfer Protein 1 of Celery. PLoS ONE 6(8): e24150. doi:10.1371/journal.pone.0024150

Editor: Jacques Zimmer, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg
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Introduction

In the Mediterranean population, non-specific lipid transfer

proteins (LTP) represent important allergens in fruits and

vegetables and account for the majority of type I food allergies

in adults [1,2,3]. Due to their pronounced resistance to thermal

and proteolytic treatment [4], they are considered true food

allergens and were proposed to mediate sensitization via the

gastrointestinal tract [3]. Pru p 3, the major allergen from peach

seems to play an important role in LTP-mediated allergy with a

sensitization prevalence of 13% and 9.8% in a Spanish and Italian

population, respectively [5,6]. The clinical picture of an LTP-

mediated food allergy ranges from local oral allergy syndrome to

severe systemic symptoms [7]. We recently identified and

characterized an nsLTP1 in celery stalks which was included as

Api g 2.0101 in the official I.U.I.S. allergen nomenclature [8]. The

natural protein consists of a single isoallergen with a mass of

9024.5 Da. A recombinant protein was produced as non-fusion

protein in E. coli which presented equivalent physio-chemical and

immunological properties as the natural counterpart. In line with

other members of the LTP family, Api g 2 shows extreme

resistance to gastrointestinal proteolysis and thermal treatment [8].

Notably, the allergen was able to fully refold after heating in acidic

environment, a property that was previously also demonstrated for

Pru p 3 [8,9]. In addition to plant-derived foods, LTP have been

shown to constitute important allergens in pollen and ever since
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there is a longstanding debate about the sensitizing source [7].

Generally, the classification of LTP in the field of food allergy

turns out to be extremely difficult. On the one hand, LTP fulfill all

the requirements of true food allergens, i.e. the capability to

sensitize via the gastrointestinal tract. On the other hand, they

might be regarded as pollen-associated food allergens, as allergenic

LTP are also found in plant pollen and associations between pollen

and food allergies involving LTP sensitization have been reported

[3,7,10]. In mugwort and peach allergy, both Art v 3 and Pru p 3

have been proposed as primary sensitizer [11,12], however at

present no evidence suggests a clinical association between

sensitization to plant food and pollen LTP.

Apium graveolens, celery, is considered one of the most important

plant food allergen sources in the adult Central European

population [13,14] and therefore, declaration of products that

contain celery is mandatory (European Directive 2007/68/EC,

amending Directive 2000/13/EC). Apart from the recently

identified nsLTP1, three allergens from A. graveolens have been

described and characterized at the molecular level, the PR-10

protein Api g 1 [15], the profilin Api g 4 [16], and Api g 5, a

member of the flavoprotein family [17]. Among Central European

patients, a predominant sensitization to Api g 1 (59%) and Api g 4

(23$41%) is observed [16,18]. Although celery stalks are

worldwide consumed, there is only limited information on

allergens and clinical relevance of the aerial celery tissue, since

the majority of studies focused on patients from Central Europe

[13,14,19,20], who predominately consume celery tuber (celeriac).

Noteworthy, the recently identified LTP1 Api g 2 can be

considered a celery stalk-specific allergen, since expression is

restricted to the green stalks and was not detectable in the tuber

tissue [8].

Clinical allergy to celeriac is frequently associated with

sensitization to Artemisia vulgaris and Betula verrucosa pollen in

Central European countries and thus, the terms celery-mugwort

and celery-birch syndrome have been established [10]. Association

between birch pollinosis and celery hypersensitivity is mainly

attributed to Api g 1, a Bet v 1-homologous PR-10 protein [15,21].

Moreover, Api g 4 and Api g 5 have been mentioned to play a role

as cross-reactive molecules in this population [16,22,23]. By

contrast, a heat stable molecule involved in the celery-mugwort

syndrome which might be able to trigger severe allergic reactions

in Central European celeriac sensitized patients is not yet

conspicuously determined [24].

In this study, we investigated the sensitization prevalence of Api

g 2 in allergic patients from the Mediterranean area by testing on a

microarray system in parallel with other LTP. The sensitization

pattern and IgE cross-reactivity of Api g 2 was investigated in a

selected patients’ cohort sensitized to Art v 3 and Pru p 3, model

allergens for pollen and plant food LTP, respectively. In order to

elucidate which molecule has the potential to act as primary

sensitizer, we immunized mice with pollen and plant-food derived

LTP and determined the patterns of antibody cross-reactivity.

Immunogenicity and putative T cell epitopes were determined in
vitro by simulated endolysosomal degradation assays.

Results

IgE profiling of celery stalks, mugwort pollen, and peach
LTP in Mediterranean patients
To assess the sensitization prevalence of the novel celery stalk

allergen in an allergic Mediterranean population, sera of 786

subjects were tested in vitro by an experimental ISAC microarray.

Among them, 25.6% displayed specific IgE against celery stalk

LTP, 18.6% were sensitized to mugwort pollen LTP, and 28.6%

to peach LTP. The majority of patients (n = 111) reacted to all 3

LTPs, and associated reactivity of Api g 2 to Pru p 3 and Art v 3

was observed in 54 and 4 individuals, respectively (Figure 1A).

Isolated IgE reactivity to Api g 2 was observed in 32 patients, while

16 and 44 patients exclusively reacted to Art v 3 and Pru p 3,

respectively. In sensitized individuals, the average IgE reactivity to

Api g 2, Art v 3, and Pru p 3 was 1.03 kUA/l, 1.12 kUA/l, and

2.59 kUA/l, respectively. As shown in Figure 1B-D, significant

correlations (p,0.0001) in IgE-reactivity were observed between

all three LTP under investigation.

Symptoms and IgE reactivity of patients sensitized to
plant food and pollen LTP
Defining Art v 3 and Pru p 3 as model allergens for pollen and

food LTP sensitization, we selected a cohort of 32 Api g 2-positive

subjects that additionally displayed in vitro IgE-reactivity to

mugwort pollen and peach LTP. Demographic data, clinical

manifestations to the respective sources and IgE reactivity to Api g

2, Art v 3, and Pru p 3 are given in Table 1. In this selected cohort,

ten patients (P1-10) reported allergic reactions upon consumption

of celery stalks which predominately presented as oral allergy

syndrome (80%). In addition, angioedema was observed in 2

patients and anaphylaxis in 1 patient. However, twelve individuals

(P11-22) could not unambiguously report about clinical manifes-

tations or tolerance upon consumption of raw celery stalks since

they were not exposed, routinely cooked the vegetable as a

precaution or actively avoided consumption due to previously

severe allergic reactions to other LTP containing food sources. To

investigate a possible relevance of other A. graveolens allergens in
our patients’ cohort, sensitization to Api g 1 was derived from a

microarray testing revealing a positive IgE reactivity for patient P1

and P29. To give further information on potentially important

cross-reactive molecules, profilin sensitization of two patients (P1

and P31) is denoted in Table 1. Notably, among the ten patients

with clinical symptoms to celery stalks, only one patient (P1)

showed additional sensitization to A. graveolens allergens. Thus, for
the remaining subjects, Api g 2 might be involved in a clinical

manifestations of celery stalk allergy, even though sensitization to

yet unknown celery allergens cannot be ruled out and would need

further investigation. Adverse reactions upon consumption of

peach and inhalant allergy symptoms to mugwort pollen were

reported by 27 and 18 patients sensitized to Pru p 3 and Art v 3,

respectively (Table 1). LTP-specific serum IgE levels were

determined in ELISA showing highest in vitro reactivity for Pru p

3 which differed significantly from Api g 2 (p,0.001) and Art v 3

(p,0.02) using the Wilcoxon signed rank sum test (Table 1).

Interestingly, heat-denaturation for 15 minutes at 95uC at a

concentration of $1 mg/ml in phosphate buffer resulted in

complete abolishment of IgE reactivity to celery stalk and

mugwort pollen LTP, whereas residual IgE-binding (range 5.5–

62.0%, median 6.9%) to Pru p 3 was still detectable in 50% of

patients (data not shown). No unspecific IgE binding to

investigated proteins was observed using sera of non-atopic

individuals.

IgE cross-reactivity in LTP sensitized patients
The primary sequence identity of Api g 2, Art v 3, and Pru p 3

ranges between 49% and 53%, and amino acid alignments and 3-

D models of investigated LTP are depicted in Figure 2. Previously

identified linear IgE-binding epitopes of Pru p 3 [25,26,27]

demonstrate highest sequence identities to Api g 2 (76%) and Art v

3 (82%) within residue 66-82 in the C-terminal epitope (Figure 2).

To assess the IgE cross-reactivity of Api g 2, Art v 3, and Pru p 3,

inhibition studies were performed using LTP-reactive sera in a

Role of Api g 2 in nsLTP Sensitization
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single point highest inhibition-achievable assay (Figure 3A).

Generally, considerable cross-reactivity was observed among the

investigated molecules, however varying degrees of inhibition were

achieved using individual patients’ sera. Highest cross-inhibition

was accomplished with Pru p 3 which was significantly higher than

inhibition with Art v 3 and Api g 2 to solid-phase coated Api g 2

and Art v 3, respectively. Generally, IgE reactivity to immobilized

Pru p 3 could only be weakly inhibited by Api g 2 (median =

20.2%) and Art v 3 (median = 0%). Notably, pre-incubation of

sera using Api g 2 for immobilized Art v 3 showed 72.5% (median)

and Art v 3 for immobilized Api g 2 presented 43.4% (median) of

cross-inhibition, and was thus in average higher than their

inhibitory capacity observed towards Pru p 3. Interestingly, a

negative correlation (r =20.842) was found for mugwort and

peach LTP inhibition in sera of 3 patients, since Art v 3 could

efficiently inhibit Pru p 3 reactivity, but not vice versa. In order to

evaluate IgE cross-reactivity to solid phase coated Api g 2 in a dose

dependent manner, cross-inhibition experiments were performed

using 3 sera of celery stalk allergics (Figure 3B), 2 subjects eating

only cooked celery (Figure 3C), and 5 individuals tolerating raw

celery (Figure 3D). Notably, patients who showed highest self-

inhibition with Api g 2 frequently displayed clinical symptoms

upon consumption of celery stalks, while stronger Pru p 3 and/or

Art v 3 reactivity was observed in celery asymptomatic patients.

Elucidation of LTP cross-reactivity in a mouse model
To evaluate the development of cross-reactive antibodies under

LTP mono-sensitization conditions, mice were immunized with

purified single molecules. Art v 3-sensitized animals frequently

developed high IgG antibody titers to both, Api g 2 and Pru p 3.

Immunization with Api g 2 resulted in antibodies that were able to

bind to Art v 3, while Pru p 3 sensitized mice did not develop

substantial IgG titers that could recognize other LTP (Figure 4A–

C). To determine IgE antibody cross-reactivity in a functional

assay, degranulation of rat basophil leukemia (RBL) cells was

examined after passive sensitization with serum pools of 6 mice

(Figure 5A–C). Murine IgE antibodies generated upon Api g 2 and

Art v 3 sensitization showed biologically relevant cross-reactivity.

By contrast, Pru p 3 was not able to trigger a mediator release in

celery stalk and mugwort pollen LTP sensitized mice (5A-B).

Notably, IgE-mediated degranulation using sera of Pru p 3-

immunized animals was clearly restricted to the sensitizing

molecule (Figure 5C).

Mimicking the generation of T cell peptides by
endolysosomal degradation
To evaluate the patterns and kinetics of degradation by

endolysosomal proteases simulating antigen processing, LTPs

were incubated with microsomal contents isolated from dendritic

cells of LTP-sensitized patients. Highest stability was observed for

Pru p 3, which presented detectable intact protein in gel

electrophoresis even after 48 hours of incubation. In contrast,

the majority of Art v 3 and Api g 2 was proteolytically cleaved

within 12 hours (Figure 6A). Protein degradation was densitome-

trically evaluated and calculated half-lives were 11, 18, and 32

hours for Art v 3, Api g 2, and Pru p 3, respectively (Figure 6B).

Figure 1. Sensitization to celery, mugwort pollen and peach LTP in a Mediterranean population. 786 individuals were screened for IgE
reactivity to rApi g 2, rArt v 3, and nPru p 3 using an allergen microarray and co-sensitization patterns are shown in the Venn diagram (A). Statistical
significant correlations of allergen specific IgE reactivity presented as kUA/L (p,0.0001) were observed for Api g 2, Art v 3 and Pru p 3 using the
Spearman correlation test (B-D).
doi:10.1371/journal.pone.0024150.g001

Role of Api g 2 in nsLTP Sensitization
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Generated peptides were identified by tandem mass spectrometry

and individually aligned to the amino acid sequence of celery

(Figure S1), mugwort (Figure S2), and peach (Figure S3) LTP. In

general, the highest overall numbers of peptides were obtained for

Api g 2 and Art v 3 which correlates with their higher proteolytic

susceptibility. Although LTP demonstrate only moderate primary

sequence identity, all proteins presented four distinct peptide

clusters spanning similar regions. However, peptides within those

defined clusters differed regarding their numbers as well as kinetics

of appearance (Figure 6C). Cluster 1 and 3 comprised the largest

numbers of peptides which were also generated continuously

throughout the incubation period. A later onset was observed for

peptides within cluster 2, a subset of early generated peptides (Pru

p 3 cluster 2b) was exclusively observed for peach LTP.

Interestingly, Api g 2 and Art v 3 produced considerable numbers

of peptides comprising cluster 4, while only a limited number

could be assigned to the C-terminal region of Pru p 3. As depicted

in Figure 6C, peptide regions generated by endolysosomal

Table 1. Demographics, in vitro sensitization profile and symptoms table.

Celery stalks Mugwort pollen Peach

Patient Age Gender Api g 2 Symptoms Art v 3 Symptoms Pru p 3 Symptoms

P1 10 M 8.6 OAS*,** 12.0 NS 44.4 OAS

P2 43 M 60.8 OAS 13.0 R 56.8 OAS

P3 20 M 15.6 OAS 6.2 R 17.2 OAS.ANG

P4 15 M 7.2 OAS 7.8 R 12.2 OAS

P5 22 M 21.6 ANX, OAS 24.6 NS 59.6 ANX. OAS

P6 35 M 20.0 OAS 17.8 NS 58.2 A, OAS, U

P7 11 F 11.8 OAS 10.0 NS 43.4 OAS

P8 21 M 72.8 OAS 64.2 NS*** 73.2 U

P9 23 M 20.6 ANG 67.6 C, R*** 54.8 C, R

P10 26 M 9.4 ANG 3.6 C, R 31.2 A, OAS, U

P11 14 M 50.2 Eaten cooked 65.6 NS 59.2 U

P12 15 M 90.8 Eaten cooked 63.8 R 103.4 No exposure

P13 23 M 38.6 Eaten cooked 53.2 NS 90.8 OAS

P14 23 M 42.4 Eaten cooked 31.6 NS 52.6 No exposure

P15 31 F 1.6 Eaten cooked 7.0 NS 28.6 OAS

P16 35 M 137.6 Avoided 77.4 R, A*** 212.8 OAS

P17 23 F 11.8 Avoided 11.0 NS 11.2 NS

P18 27 F 4.6 Avoided 4.2 R 44.6 U, ANG

P19 34 M 17.0 Avoided 79.2 R*** 14.4 R, AB

P20 54 F 3.6 Avoided 2.2 R 4.2 OAS, ANG

P21 17 F 6.2 No exposure 49.6 NS 78.6 OAS

P22 33 F 3.4 No exposure 2.4 R*** 2.0 OAS

P23 56 F 33.8 NS 149.4 R, C, A*** 29.0 ANX

P24 39 M 50.4 NS 61.8 NS*** 43.8 NS

P25 24 M 35.8 NS 17.8 R 59.6 OAS

P26 14 F 25.6 NS 41.2 NS 63.0 OAS

P27 35 F 9.8 NS 6.6 R 23.4 OAS, AP, A

P28 45 M 39.4 NS 8.8 R, C 80.4 No exposure

P29 25 F 12.8 NS* 62.0 R, C*** 26.8 OAS

P30 36 F 66.2 NS 54.2 NS 76.2 AP

P31 54 F 8.6 NS** 2.8 R 51.8 U

P32 43 F 2.0 NS 2.0 R, C 6.0 OAS

Mean=29
SD=13

F=14
M=18

Mean=29.4
Median =18.5

S=10
ND=12
NS=10

Mean=33.8
Median=17.8

S=18
ND=0
NS=14

Mean=50.4
Median=48.2

S=27
ND=3
NS=2

Demographics, clinical symptoms and specific IgE (ng/ml serum) to LTP from celery stalks, mugwort pollen and peach determined in ELISA are given for 32 patients.
A, bronchial asthma; ANG, angioedema; ANX, anaphylaxis; AP, abdominal pain; C, conjunctivitis; ND, not definable; NS, no symptoms; OAS, oral allergy syndrome; R,
rhinitis; S, symptoms; SD, standard deviation; U, urticaria;
*, Api g 1 sensitization;
**, profilin sensitization;
***, Art v 1 sensitization.
doi:10.1371/journal.pone.0024150.t001

Role of Api g 2 in nsLTP Sensitization
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proteases perfectly matched previously identified T cell epitopes of

Pru p 3 [28,29,30]. Interestingly, cluster 1 and 3 which comprised

most of the peptides were also shown to harbor the immunodo-

minant and most important T cell epitopes within amino acids 12–

27 and 57–75 of Pru p 3 [28,29].

Discussion

In the Mediterranean area, up to 60% of patients allergic to

fruits and/or vegetables display LTP-specific IgE antibodies [31].

Sensitization to Pru p 3, the most important allergen trigger in this

protein family is associated with an increased risk in the prevalence

as well as in the severity of food allergies [5]. With the increasing

number of identified allergenic LTP (www.allergome.org), cross-

reactivity and sensitization pattern can be determined in more

detail. In this study we investigated the relevance of Api g 2 [8],

the recently characterized nsLTP1 from celery stalks in a

Mediterranean population. Interestingly, the sensitization preva-

lence to Api g 2 was only slightly lower than that observed for Pru

p 3, and higher than that of Art v 3 and Cor a 8, the nsLTP of

hazelnut (15.8%, unpublished data) in our 786 tested subjects.

Although diverse sensitization patterns were observed similar to

previous studies, [7], the majority of the individuals reacted to all 3

investigated LTP and we found a good correlation of specific IgE

levels. Interestingly, we identified several individuals reacting

exclusively to one of the three LTP under investigation. Although

this finding can be suggestive of mono-sensitization, this would

require a broader IgE testing of LTP molecules. To analyze cross-

reactivity and relevance of Api g 2 sensitization in the context of

LTP pollen and food allergy, we defined a cohort of 32 patients

positive to Api g 2 with in vitro reactivity to Art v 3 and Pru p 3.

Among this population we observed 10 patients with clinically

relevant celery allergy, suggesting that Api g 2 might represent an

important Apium graveolens allergen in the LTP-sensitized Mediter-

ranean population. In contrast to Central and Northern European

birch-endemic areas where sensitization to Api g 1 and Api g 4 is

predominant [13,18], these celery allergens were of negligible

relevance in our investigated cohort and only one of the

symptomatic patients demonstrated reactivity to this celery

components. Generally, the sensitization frequency to Api g 1 is

rather low in Italy (1.6%) [6], which can be explained by the fact

that there is low exposure to birch trees. In addition, the

Mediterranean population almost exclusively consumes celery

stalks which contain only a marginal amount of Api g 1 compared

to celery tuber (unpublished data). All those facts suggest that Api g

2 could be involved in celery stalk allergy in our patients’ cohort,

however the demonstration of clinical relevance regarding this

molecule demands further investigation. Although sensitization to

LTP was consistently reported in the context of development of

severe symptoms [1], these molecules predominately elicit mild

local symptoms [3]. Likewise, the majority of our patients

displayed OAS after consumption of LTP-containing food, but

some were also affected by more severe and systemic symptoms.

Interestingly, sera of symptomatic patients frequently displayed a

more pronounced self-inhibition to Api g 2 thus highlighting the

importance of antibody binding affinity over quantitative levels of

specific IgE. Api g 2 demonstrates similar resistance to gastric and

thermal treatment as Pru p 3 [4,8,9], therefore it may also possess

the capacity to trigger generalized allergic reactions and sensitize

via the gastrointestinal tract.

Due to their conserved alpha-helical structure, LTP are

involved in varying degrees of IgE cross-reactivity with different

levels of clinical relevance [3,7]. In a preceding study, we showed

that thermal treatment of Api g 2 at low concentrations (4 mg/ml)

did not significantly influence the ability to bind human IgE [8].

However, denaturation of LTP at concentrations of 1-2 mg/ml in

neutral buffers completely abolished IgE reactivity to Api g 2 and

Art v 3 in the present study. This observation might be explained

by the fact that high temperatures at neutral pH can lead to

disulfide bond cleavage facilitating generation of inter-molecular

cysteine-linkages. This might in turn favor aggregate formation

which seems to be linked to the concentration of the molecule

used during denaturation. Generally, it can be anticipated that

Figure 2. Sequence alignment and homology modeling of LTP. Primary sequence alignment of the mature protein sequences of celery stalk,
mugwort pollen and peach LTP (A). Previously identified IgE-binding epitopes of Pru p 3 are labeled with boxes; thick and thin boxed amino acids
correspond to peptides identified by Garcia-Casado et al [26] and Borges et al [25], while highlighted amino acids in grey were identified by
mimotope mapping [27]. Homology modeling of Api g 2 (B), Art v 3 (C) and Pru p 3 (D) based on the structure of Pru p 3 (pdb: 2B5S). Identified IgE
epitopes of Pru p 3 are depicted as red, orange, and yellow bars in the sequence and structure of the molecule. Conserved residues of the Pru p 3
epitopes are depicted colored in the models of Api g 2 and Art v 3.
doi:10.1371/journal.pone.0024150.g002

Role of Api g 2 in nsLTP Sensitization
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Figure 3. IgE cross-reactivity of LTP sensitized patients. Single point highest inhibition-achievable assays were performed using rApi g 2, rArt
v 3, and nPru p 3 for pre-incubation of individual sera (A). Cross-inhibition was tested using the allergen microarray and values are expressed as
percentage of IgE inhibition. Data were analyzed using the Wilcoxon signed rank test, the median is shown as solid line and whiskers indicate the
interquartile range. Inhibition to solid-phase coated rApi g 2 was evaluated in ELISA using sera of patients with symptoms to raw celery stalks (B) or
those consuming solely cooked celery (C), and asymptomatic patients (D). Sera were pre-incubated with increasing concentrations (1024 to 101 mg/
ml) of purified LTP and values are given as percentage of inhibition.
doi:10.1371/journal.pone.0024150.g003

Figure 4. LTP cross-reactivity profiles of murine antibodies. Balb/c mice (n = 6) were immunized with purified Api g 2 (A), Art v 3 (B) and Pru p
3 (C). Allergen-specific IgG antibody titers to immobilized celery stalk, mugwort pollen and peach LTP were determined by limiting dilution in ELISA.
Bars represent means and whiskers indicate standard errors of means. LOD, limit of detection.
doi:10.1371/journal.pone.0024150.g004
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Figure 5. Functional IgE cross-reactivity of LTP sensitized mice. Rat basophil leukemia cells (RBL) were passively sensitized with serum pools
from mice immunized with Api g 2 (A), Art v 3 (B), and Pru p 3 (C). Mediator release was triggered by serial dilutions of celery stalk, mugwort pollen
and peach LTP (0.1–1000 ng/ml) and is given as percentage of total release obtained by Triton X-100.
doi:10.1371/journal.pone.0024150.g005

Figure 6. Simulated endolysosomal degradation of LTPs. Celery, mugwort pollen and peach LTP were incubated with a microsomal fraction
obtained from dendritic cells of LTP allergic patients. Decline of intact proteins was monitored on SDS-PAGE (A) and evaluated densitometrically (B).
Mass spectrometry based analysis of peptides demonstrated distinct clusters at similar regions of the respective LTPs and amino acid positions are
given in parenthesis (C). The panel on the right side shows the number of peptides (indicated by different grey shadings) observed for each cluster
during endolysosomal digestion (0.5–48 hours). Black bars on bottom represent previously identified T cell epitopes of Pru p 3 [28,29].
doi:10.1371/journal.pone.0024150.g006
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the majority of LTP epitopes are dependent on an intact 3-

dimensional fold as loss of the disulfide stabilized structure by

reduction and alkylation resulted in complete unfolding of Pru p

3 and subsequent loss of allergenicity [32]. Even though Pru p 3

was able to maintain minor parts of its IgE-binding activity upon

treatment at 95uC in our study, this might be due to higher

resistance to thermal processing which could have left some

conformational epitopes still intact. In previous studies, several

IgE-binding epitopes of Pru p 3 were identified by peptide and

mimotope mapping [25,26,27]. However, the relevance of IgE-

binding to linear epitopes remains unclear, given the fact that

unfolding of Pru p 3 led to completely abrogated allergenicity

[32]. Nevertheless, highest sequence identities of Pru p 3 to Api g

2 and Art v 3 are found in the C-terminal region which could

therefore constitute a generally LTP cross-reactive epitope

(Figure 2). The identified N-terminal epitope seems to be less

conserved and likely represents a Rosaceae-specific epitope [25],

with lower homology to LTP from other families. A striking

sequence similarity between Api g 2 and Art v 3 was observed

within residue 27–44, which might encompass a cross-reactive

celery stalk/mugwort epitope thus explaining the higher inhib-

itory capacity of Api g 2 to mugwort when compared to peach

LTP. Interestingly, the IgE-binding to Art v 3 was not inhibited

by Pru p 3 in 3/20 patients’ sera, suggesting that these individuals

were primarily sensitized to mugwort pollen Art v 3 and IgE

reactivity to Pru p 3 might be due to cross-reactivity. These

patients were also reactive to Art v 1, a genuine marker allergen

for Artemisia sensitization [33], which further corroborates this

idea. The distinction between LTP co-sensitization and cross-

reactivity is generally difficult, explaining the contradictory results

and divergent interpretation of clinical manifestations in previous

studies [11,12]. As Art v 3 and Pru p 3 seem to harbor common

but also distinct allergen-specific IgE-epitopes, both pollen and/

or food LTP were suggested as primary sensitizer [3]. Since the

sensitizer question cannot be unequivocally answered in human

studies, we used a mouse model to investigate antibody cross-

reactivity under mono-sensitization conditions. By immunizing

purified recombinant molecules, biased antibody responses due to

trace amounts of allergen impurities in a natural LTP preparation

(e. g. profilins, PR-10 proteins) could be entirely ruled out [8].

Based on our in vivo data, immunization with Api g 2 or Art v 3

seems to induce antibodies that were able to recognize the

homologous LTP of mugwort and celery stalks, and furthermore

trigger biologically relevant mediator release via IgE cross-

linking. Notably, antibodies raised against Pru p 3 were not able

to trigger mediator releases when tested with Api g 2 and Art v 3.

Results obtained from this murine model cannot be unequivo-

cally translated to the human situation, e. g. due to diverse HLA

repertoires. However, it remains still unclear if only one

particular LTP is involved in primary sensitization, since we

identified a considerable number of individuals reacting to Art v 3

and/or Api g 2 in the absence of a Pru p 3 sensitization.

Therefore, one might speculate that LTP allergy could coexist as

at least two independent branches, (i) sensitization via food Pru p

3 and (ii) sensitization via pollen, e.g. Art v 3. Such a multi-

sensitization may result in broadening of the spectrum of IgE

reactivity to different LTP, while sensitization could also take

place through an LTP that was not yet identified. The fact that

some studies showed that pollen LTP can act as primary

sensitizer [11,34,35,36] is supporting the concept and may help

to understand contradictory study outcomes of food and pollen

LTP [7]. This idea is further supported by our mouse data which

showed Pru p 3 to be independent of Art v 3 and Api g 2

antibody cross-reactivity.

The previously reported association of sensitization to Apium
graveolens and Artemisia vulgaris pollen [10] could be partially

attributed to the IgE cross-reactivity between Api g 2 and Art v 3.

However, commercially available products for allergy diagnosis

often do not indicate the specific tissue of Apium graveolens

ingredients used for extract preparation. Notably, there is a

tremendous difference regarding tissue expression of Api g 2. The

protein was only present in the aerial tissue but could not be

detected in tuber, a fact that could be easily overcome using

molecule-based allergy diagnosis [14]. However, the involvement

of Api g 2 in the celery-mugwort syndrome described for Central

European patients with allergic reactions to celeriac is not yet clear

and needs further investigations in a clinical study.

It has previously been shown that protein stability affects both,

allergenicity and immunogenicity of allergens. Susceptibility to

endolysosomal proteolysis has been demonstrated to correlate with

immunogenicity, as rather stable molecules warrant continuous

supply of T cell stimulatory peptides [37,38]. All investigated LTP

displayed relatively long half-lives of .10 hours, and thus were

more resistant to degradation as e. g. Bet v 1 from birch pollen

[37]. Observed differences in the susceptibility to endolysosomal

degradation might be explained by the primary sequence of

investigated LTP. In particular the varying number of surface

exposed lysine residues, i. e. Pru p 3 (4 lysines), Api g 2 (8 lysines),

Art v 3 (13 lysines) which are susceptible to Cathepsin S cleavage,

an important protease for antigen processing [39] may influencing

the cleavage efficiency. Interestingly, stability to endolysosomal

degradation correlated with stability to gastric digestion and

thermal treatment of investigated LTP [8,40]. Generally, Pru p 3

can be considered the most stable, while the pollen LTP Art v 3

seems to be less stable than plant food LTP. Mass spectrometry-

based analysis of endolysosomal degradation revealed that all three

LTP share similar proteolytic sites, which is reflected by the

occurrence of four common nested clusters of peptides sharing a

central core with variable flanking residues spanning identical

protein regions. These data indicate a strong influence of the

three-dimensional protein structure on the generation of T cell

epitopes. In general, Api g 2 and Art v 3 displayed a more

congruent profile compared to Pru p 3, particularly in terms of

peptide numbers, kinetics, and the absence of sub-cluster 2b which

was only observed for Pru p 3. Interestingly, the in vitro generated

peptides of Pru p 3 (cluster 1–3) perfectly matched to recently

identified T cell epitopes [28,29]. The importance of cluster 3 was

also unraveled in two recent studies using natural Pru p 3 and

microsomes from human or murine dendritic cells [32,41].

Notably, this cluster harbors the immunodominant T cell epitope

Pru p 361–75 and it is characterized by an early onset and long-

lasting peptide generation. Fragments within clusters 2b and 3

were recently also found upon simulated duodenal digestion of Pru

p 3 [42], suggesting the presence of T cell stimulatory peptides

directly on site of the intestine. Interestingly, the C-terminal cluster

of Pru p 3 contained only few peptides and seems to be irrelevant

for its T cell stimulation [29]. In contrast, numerous peptides of

Api g 2 and Art v 3 were found within cluster 4, a fact that was

recently also observed for Cor a 8 [41], suggesting a possible

relevance in T-cell reactivity for celery, mugwort pollen and

hazelnut.

In the present study we could show that Api g 2 represents a

relevant, cross-reactive allergen of Apium graveolens in patients

suffering from LTP-mediated allergy in the Mediterranean area.

Api g 2 contains common B cell epitopes of both, pollen and food-

derived LTPs. However, data obtained from mouse immunization

experiments revealed that Api g 2 shares more epitopes with

mugwort Art v 3 and seems to be rather distinct from peach Pru p
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3. Generally, the number and origin of LTP that patients react to

is highly inhomogeneous, and the distinction between co-

sensitization and cross-reactivity is rather difficult. Although, it is

commonly accepted that food LTP, i. e. Pru p 3 acts as primary

sensitizer in LTP allergy, our data indicate that in accordance with

classical pollen-associated food allergies, sensitization might in

addition be mediated by pollen LTP.

Materials and Methods

Screening for IgE reactivity to Art v 3, Api g 2, and Pru p 3
in an Italian sensitized population
786 non-randomly distributed allergic subjects were selected on

the basis of at least one positive IgE result on the ISAC 103

microarray (PMD, Vienna, Austria) [6]. Subjects were tested on a

customized microarray including recombinant Art v 3 and Api g 2

[8,40] and natural Pru p 3 [43]. Purified proteins were

immobilized on the microarray and tested following the

established ISAC testing procedures [6].

Clinical evaluation of a selected cohort
For detailed analysis, we selected a patient’s cohort (n = 32)

presenting inhalation- and/or ingestion related allergy symptoms

to LTP containing pollen or food sources with IgE sensitization to

Api g 2, Art v 3, and Pru p 3. Clinical features of patients were

recorded using InterAll e-record (Allergy Data Laboratories s.c.,

Latina, Italy). The study was approved by the Institutional Review

Board of Istituto Dermopatico dell’Immacolata – IDI-IRCCS,

Rome, Italy (n. 106-CE-2005), and signed informed consents were

obtained.

Recombinant production of LTP from celery stalks,
mugwort pollen, and peach fruit
The sequence corresponding to the mature celery LTP

(GenBank accession no. FJ643539) was cloned into the pHis

Parallel2 expression vector. Recombinant Api g 2.0101 was

expressed as soluble non-fusion protein in E. coli Rosetta-gami

B(DE3) pLysS (Novagen, Gibbstown, NJ) according to established

protocols [8,40]. Briefly, protein purification was performed with

ion exchange chromatography using a SP FF column (GE

Healthcare, Chalfont St. Giles, UK) and subsequently submitted

to gel filtration on a Superdex 10/300 GL column (GE

Healthcare). Details on the molecular characterization and

demonstration of equivalent physicochemical and immunological

properties of the natural and recombinant molecule are reported

elsewhere [8]. Recombinant Art v 3.0201 [40] and Pru p 3 [44]

were produced and purified as previously described. Purified

proteins were analyzed by denaturing SDS-PAGE and visualized

by Coomassie Brilliant Blue R-250 staining. Protein concentra-

tions were determined using the Pico Tag method (Waters,

Milford, MA) and circular dichroism measurements were

performed at 20uC to demonstrate the structural integrity of all

proteins following published protocols [8,40].

ELISA and inhibition assays
Sera of 32 patients were tested for IgE reactivity to rApi g 2,

rArt v 3, and rPru p 3 in ELISA experiments. Maxisorp plates

(Nalge Nunc, Rocherster, NY) were coated with 200 ng allergen in

PBS o/n at 4uC. Unspecific binding was blocked with TBS

pH 7.4, 0.05% (v/v) Tween-20 and 1% (w/v) BSA and incubated

with 1:4 diluted patients’ sera o/n at 4uC. Bound IgE was detected

with alkaline phosphatase-conjugated monoclonal anti human IgE

antibodies (BD Biosciences, Franklin Laker, NJ). Specific serum

IgE levels were calculated based on a quantitative sandwich

ELISA using goat anti-human IgE antibody (KPL, Gaithersburg,

MD) and purified human IgE (Serotec, Raleigh, NC) as internal

standard. Measurements were performed in duplicates and values

exceeding 3xSTD of background were considered positive. In

addition, purified recombinant allergens at concentrations of 1–

2 mg/ml in 50 mM phosphate buffer were heat denatured

(15 min at 95uC) prior to coating on solid phase and IgE reactivity

was assessed as described above.

Inhibition studies were performed as ‘‘single point highest

inhibition achievable assay’’ in a microarray format [40].

Undiluted sera of 20 individual patients were pre-incubated

overnight with purified allergens at a concentration of 0.4–

0.5 mg/ml and the percentage of inhibition was determined. In

addition we assessed the dose-dependent IgE inhibition to solid

phase coated rApi g 2 in ELISA using sera of ten patients with

different clinical manifestations to celery stalks. Cross-inhibition

was performed with increasing concentrations of purified Api g 2,

Art v 3, and Pru p 3 (1024–101 mg/ml).

Animal experiments
Female BALB/c mice (Charles River Laboratories, Wilming-

ton, MAS) were immunized subcutaneously with 10 mg allergen in

50 ml DPBS adsorbed to 50 ml Alugel-S (Serva, Heidelberg,

Germany) given as two 50 ml subcutaneous injections administered

bilaterally in the lumbar region and boosted on days 14, 28, and

42. LPS concentrations of the proteins were ,3 EU/mg as

determined by the limulus amoebocyte lysate assay (Pyrochrome,

East Falmouth, MA). Antigen-specific total IgG levels were

determined using a peroxidase-conjugated rabbit anti mouse

IgG antibody (Bio-Rad, CA) followed by chromogenic substrate

development and antigen titers were calculated as limit of

detection (LOD) values. Functional IgE levels were measured in

a mediator release assay using rat basophil leukaemia (RBL)-2H3

cells [45]. Briefly, RBL cells were passively sensitized with a 1:40

diluted murine serum pool (n = 6) raised against rApi g 2, rArt v 3,

and rPru p 3, respectively. Cross-linking and degranulation was

triggered by serial protein dilutions and b-hexosaminidase release

was measured by enzymatic cleavage of the fluorogenic substrate

4-methyl umbelliferyl-N-acetyl-b-glucosaminidase (Sigma). Results

are reported as percentage of total b-hexosaminidase release of

Triton-X100- treated cells. Animal experiments were conducted

according to National guidelines approved by the Austrian

Ministry of Science and Research, Ref. II/10b Genetic engineer-

ing and Animal experiments (approval Nr. BMWF-66.012/0011-

II/10b/2010).

Endolysosomal degradation assays
Microsomes were isolated from monocyte-derived dendritic

cells obtained from 16 LTP-allergic donors, and used for protein

degradation according to a recently established protocol from our

laboratory [38]. Briefly, cells were harvested by low speed

centrifugation, re-suspended in 10 mM Tris acetate pH 7.0,

250 mM sucrose and homogenized with a Dounce glass tissue

homogenizer. Cellular debris and nuclei were removed by

centrifugation at 6000 x g and microsomes isolated by ultracen-

trifugation at 100,000 x g. Protein aliquots of 5 mg were digested

with 7 mg microsomal enzymes in 100 mM citrate buffer, pH 4.8

and 2 mM dithiothreitol at 37uC. Reactions were stopped by heat-

denaturation at various time points and analyzed by SDS-PAGE

and densitometric quantification of protein bands. Peptides

obtained from microsomal digestion were separated by capillary

HPLC on-line coupled to a Micromass QTof Global Ultima

instrument (Waters, Mildford, MA) as recently described [37].
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Individual peptides were grouped into clusters representing

regions that cover the majority of generated peptides.

Modelling
Homology modeling of Api g 2, Art v 3, and Pru p 3 was

performed using Modeller 9v2 (http://salilab.org/modeller) and

evaluated with ProSa2003 based on the structure of Pru p 3 (pdb:

2B5S).

Statistical analysis
Statistical evaluation was performed using the Wilcoxon signed

rank sum test and Spearman rank sum test. Groups that passed

normality and equal variance tests were analyzed with paired

samples t-test. A value of P,0.01 was considered statistically

significant.

Supporting Information

Figure S1 Proteolytic fragments obtained from endoly-
sosomal degradation of Api g 2. Peptides sequenced by mass

spectrometry after 0.5, 1, 3, 5, 12, 24, 36, and 48 hours of in vitro

digestion with microsomal fractions from monocyte-derived

dendritic cells of LTP-allergic patients are depicted within the

mature sequence of Api g 2.

(TIF)

Figure S2 Proteolytic fragments obtained from endoly-
sosomal degradation of Art v 3. Peptides sequenced by mass

spectrometry after 0.5, 1, 3, 5, 12, 24, 36, and 48 hours of in vitro
digestion with microsomal fractions from monocyte-derived

dendritic cells of LTP-allergic patients are depicted within the

mature sequence of Art v 3.

(TIF)

Figure S3 Proteolytic fragments obtained from endoly-
sosomal degradation of Pru p 3. Peptides sequenced by mass

spectrometry after 0.5, 1, 3, 5, 12, 24, 36, and 48 hours of in vitro
digestion with microsomal fractions from monocyte-derived

dendritic cells of LTP-allergic patients are depicted within the

mature sequence of Pru p 3.

(TIF)
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