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Abstract—Multi-access edge computing (MEC) comes with the
promise of enabling low-latency applications and of reducing
core network load by offloading traffic to edge service instances.
Recent standardization efforts, among which the ETSI MEC,
have brought about detailed architectures for the MEC. Lever-
aging the ETSI model, in this paper we first present a flexible,
yet full-fledged, MEC architecture that is compliant with the
standard specifications. We then use such architecture, along
with the popular OpenAir Interface (OAI), for the support of
automotive services with very tight latency requirements. We
focus in particular on the Extended Virtual Sensing (EVS) ser-
vices, which aim at enhancing the sensor measurements aboard
vehicles with the data collected by the network infrastructure,
and exploit this information to achieve better safety and improved
passengers/driver comfort. For the sake of concreteness, we select
the intersection control as an EVS service and present its design
and implementation within the MEC platform. Experimental
measurements obtained through our testbed show the excellent
performance of the MEC EVS service against its equivalent
cloud-based implementation, proving the need for MEC to
support critical automotive services, as well as the benefits of
the solution we designed.

Index Terms—Softwarized networks, Automotive services,
Road safety, Multi-access Edge Computing, V2I communications

I. INTRODUCTION

Every year, the death toll caused by road accidents globally
amounts to more than a million people, a worrying figure that
is sadly complemented by almost 50 million people left with
long-lasting or permanent injuries. The automotive sector has
been actively engaged in finding solutions, first by equipping
new cars with more sophisticated active safety systems such as
the anti-lock braking system and electronic stability control,
and more recently by using ICT at the core of its accident
prevention technology. A specific example of the latter is
the class of automotive services known as Extended Virtual
Sensing (EVS), which leverages vehicular communication to
collect the output of on-board vehicle sensors, merge them
with smart city sensors, and distribute up-to-date information
to increase the awareness of the surrounding environment.

In the area of vehicular communication, the consolidated
standards by IEEE and ETSI have recently been challenged
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by the rise of 5G networks promising the delivery of one-stop
solutions for integrated vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and vehicle-to-pedestrian (V2P) opera-
tions. The deployment of 5G networks, expected by 2020,
will offer a number of vertical industries (or, more simply,
“verticals”) a ready-to-use set of network services. Among the
verticals, the automotive industry is looking at the capabilities
of 5G networks in order to assess the potentiality of the
C-V2X (Cellular Vehicle-to-Anything) technology for road
safety. Among all the Key Performance Indicators (KPIs) of
5G that verticals, operators, and researchers alike hope to
exploit, low latency and service portability are of paramount
importance in view of devising effective EVS services. The
cornerstone of the 5G architecture that enables these KPIs
is the localized computational infrastructure represented by
Multi-access Edge Computing (MEC).

In this paper, we look at intersection control as one of
the premier EVS services, with the aim to reduce the risk
of collision between vehicles. In order to assess the ability
of softwarized networks to support EVS services, we present
a test-bed implementation of such a road safety application
on an OpenAir Interface (OAI) architecture including MEC
functionalities, and evaluate the performance with a hardware-
in-the loop simulation technique. With respect to prior art, our
work contributes to the advancement of the field in multiple
ways, as expounded below.

• MEC systems: our MEC implementation is fully com-
pliant with ETSI MEC specifications; it covers all layers
of the MEC reference architecture, as well as all of its
main components and native services. There is currently
no documented MEC system including all these features.

• EVS services: not only are the design of the EVS appli-
cation and its implementation within the MEC platform
novel contributions, but they also serve to demonstrate a
full-fledged automotive service with distinctive and prac-
tically relevant characteristics. Specifically, (i) the service
we develop integrates components that can be offered
by diverse entities (transportation authorities, various
automotive software vendors) in a microservice-based
design; (ii) standard message formats are used for V2X
communication; (iii) our design supports the deployment
of diverse collision detection algorithms in a pluggable
manner. We present one such algorithm and use it as a re-
alistic and state-of-the-art collision detection mechanism.
Our algorithm exhibits a complexity representative of this



2

Fig. 1: ETSI MEC architecture [1]

type of applications, and perfectly serves to evaluate the
suitability of MEC for automotive services with strict
end-to-end latency requirements, accounting for realistic
processing delays due to the algorithm execution.

• Scalability: our design features scaling capabilities to
ensure that MEC applications can still meet their la-
tency requirements as traffic load increases. Note that
this is a very relevant contribution since we are the
first to implement scalability using MEC standard-based
reference points and interfaces. Also, our method is not
limited to automotive services but it has a more generic
applicability.

• Evaluation of automotive services over MEC: for the
first time, we evaluate a full automotive service on top of
a real, standard-compliant, MEC platform. This serves
to demonstrate the suitability (and actually the need)
of MEC, a core feature of the forthcoming 5G mobile
communication systems, for the support of ultra-reliable
and low-latency communications (URLLC) services as
those required by automotive verticals.

II. MULTI-ACCESS EDGE COMPUTING ARCHITECTURE

MEC comes with the promise of enabling low-latency
applications, exploiting distributed heterogeneous computing
and network resources close to the user end, and reducing core
network load by offloading traffic to edge service instances.
Recent standardization efforts have brought about detailed
architectures for MEC. The ETSI MEC Industry Specification
Group (ISG) has provided a reference MEC architecture [2],
specifying its components and their interfaces, as shown in
Fig. 1. The main entities it includes are as follows:
• MEC host: It provides the execution environment to

run (virtualized) Mobile Edge (ME) applications, and

includes a MEC Platform (MEP) and a virtualization
infrastructure, where ME applications are deployed.

• MEP: This component acts as the interface between the
mobile network and ME applications. The MEP interacts
with the mobile network over the (non-standardized) Mp2
interface to access the user data plane, while it exposes
MEC services via the Mp1 reference point. The MEP
Manager (MEPM) is responsible for MEP configuration
and ME application lifecycle management, under the
control of the Mobile Edge Orchestrator (MEO).

• MEC services: They are discovered and consumed by
MEC applications over the Mp1 reference point. The
ETSI MEC standards specify a set of MEC services
that are provided natively by the MEC platform, as is
the case for the Radio Network Information Service
(RNIS) [3], local DNS, or traffic rules control. At the
same time, via Mp1, third-party MEC applications can
register and provide their own services. Note that not all
MEC applications necessarily provide or consume MEC
services.

• Mobile Edge Orchestrator (MEO): It maintains a global
view of the whole mobile edge network and is in charge
of managing ME applications. The MEO is the inter-
face between the Operations Support System/Business
Support System (OSS/BSS) and the MEC platform and
host. By interacting with the MEP and the virtual in-
frastructure, it supports the lifecycle management (e.g.,
instantiation and termination) of ME applications.

Further extensions of the MEC architecture towards network
slicing [4], [5] are currently under study.
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III. EXTENDED VIRTUAL SENSING APPLICATION

Vehicles, either human-driven or autonomous, can benefit
from data coming from multiple sources, e.g., data generated
by the dynamics of the ’ego’ (i.e., the one under observation)
vehicle, as well as onboard sensors such as advanced driver-
assistance systems (ADAS) (e.g., ultrasonic detectors, lidar,
radar, camera). Nevertheless, EVS services still play a pivotal
role in providing high safety standards. Through vehicle-to-
infrastructure (V2I) communication, an EVS server can receive
the information collected through the aforementioned sources
from the vehicles travelling over a given geographical area,
combine them, and send the resulting information back to
every vehicle as key input to its control logic. In other words,
the EVS server can exploit its centralized view of the area and
provide relevant data to the vehicles, which can be interpreted
as virtual sensor measurements. The benefits are twofold. First,
thanks to its centralized view, the EVS server can provide
vehicles with data that are significantly richer than those
locally gathered at the vehicles. Second, EVS services allow
vehicles that are not equipped with a full-fledged set of ADAS
sensors, to benefit from advanced safety services.

The EVS service we selected is intersection control, aiming
at avoiding the risk of collisions between vehicles approach-
ing an intersection. Such a service exploits the Cooperative
Awareness Messages (CAMs) – or, the equivalent Basic Safety
Messages (BSMs) in the SAE standard – that are periodically
transmitted by vehicles and collected by a third-party entity
in a database, the so-called Cooperative Information Manager
(CIM). In particular, the intersection control application ex-
tracts from the collected CAMs information about position,
heading, speed, and acceleration of all vehicles travelling
across the monitored intersection. Such information is the
input to another core component of the service, namely, the
collision detector, designed to detect vehicles on collision
course between each other or with an obstacle. The detector
output triggers the Decentralised Environmental Notification
Messages (DENM) Decider: a component generating DENMs
to be transmitted to the vehicles involved in the detected
collision. Such messages are meant to alert human drivers,
or to enable autonomous vehicles to activate their emergency
braking system. The whole service runs on one or more host
machines in the MEC platform, implemented in the proximity
of a wireless Point of Access (PoA), e.g., an LTE eNB,
covering the intersection. Below, we provide further details on
the selected EVS service, while its implementation is described
in Section IV-D.

A. The Collision Detection algorithm

The core of the EVS service is the detection algorithm,
presented in Algorithm 1 and built on the state-of-the-art
trajectory algorithm we sketched in [6]. In our work, we focus
on collisions between vehicles; however, since the algorithm is
based on generic trajectories, it can be applied to any kind of
entities that may happen to be on a collision course (e.g., ve-
hicles and pedestrians). Also, for simplicity, Algorithm 1 does
not highlight the dependency on acceleration, even though

acceleration has been accounted for in the implementation of
the EVS service.

The algorithm is run upon each new CAM message gener-
ation by a vehicle travelling across the monitored intersection.
The collision detection algorithm requires as input (Line 0):
• position and speed of the vehicle transmitting the last

CAM in the area of interest (denoted below as ego
vehicle), respectively identified by the two vectors ~p0
and ~s0, where the latter also includes information on the
heading;

• the latest CAMs sent by all other vehicles traveling in
the area, which are stored in V .

In Line 1, the set Z of entities with which the ego vehicle
could collide is initialized and, in Line 2, the future position of
the ego vehicle is evaluated for each future time instant. Then
the algorithm computes the position of each vehicle v ∈ V that
recently sent a CAM (Line 4) and the distance ~d(t) between
v and the ego vehicle (Line 5).

Thanks to the computation of ~d(t), we are now aware of
the distance between the ego vehicle and the generic vehicle
v, at any time t. To reduce false positives, our algorithm aims
at producing an alert only for imminent collisions, i.e., for
those whose time to collision is below a given threshold t2c.
Furthermore, we take into account the fact that the position of
each vehicle available at the EVS application, i.e., ~pX , refers to
the front bumper of the vehicle. To consider the actual space
taken by real vehicles, our algorithm raises an alarm if the
distance between two cars goes below a threshold d2c > 0.

Since we are interested in the minimum value of D(t), in
Line 7 we compute t?, defined as the time instant at which
the distance between the two considered vehicles is minimum.
If t? < 0, the two vehicles are getting farther apart, whereas,
if t? is greater than the threshold t2c, a collision between
them is not considered as imminent. In both cases, no action is
required (Line 8). If t? is between 0 and t2c, Line 11 computes
the minimum distance d? at which the two vehicles will be at
time t?. The algorithm compares d? against the threshold s2c:

Algorithm 1 Collision detection pseudocode

Require: ~p0, ~s0,V
1: Z ← ∅
2: ~p0(t)← ~p0 + ~s0t

3: for all v ∈ V do
4: ~pv(t)← ~pv + ~sv · t
5: ~d(t)← ~p0(t)− ~pv(t)

6: D(t) := |~d(t)|2 ← (~s0− ~sv) ·(~s0− ~sv)t
2+2(~p0− ~pv) ·

iiiiiiiiiiiiii · (~s0 − ~sv)t+ (~p0 − ~pv) · (~p0 − ~pv)

7: t? := t : d
dtD(t) = 0← −( ~p0− ~pv)·( ~s0− ~sv)

| ~s0− ~sv|2

8: if t? < 0 or t? > t2ct then
9: continue

10: d? ←
√

D(t?)

11: if d? ≤ s2ct then
12: Z ← Z ∪ {v}
13: return Z
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Fig. 2: Overview on the interaction between the test-bed building blocks

if d? is lower, then vehicle c is added to set Z , otherwise the
algorithm skips to the next iteration of the cycle.

Once all CAMs in set V have been processed, the algorithm
returns the set Z of vehicles with which the ego vehicle is on
a collision course. If the set Z is empty, no action is taken,
else an alert message is sent to the ego vehicle as well as to
all those that are in set Z .

IV. SYSTEM DESIGN AND IMPLEMENTATION

We now illustrate the design and the implementation details
of our MEC-based EVS application. The system includes four
main blocks, namely, (i) the MEC-enabled Evolved Packet-
Core (EPC) Network (Section IV-A); (ii) the procedures for
service onboarding and instantiation within the MEC platform
(Section IV-B); (iii) the vehicle emulator (Section IV-C); (iv)
the EVS and the CIM services running as MEC applications
(Section IV-D).

Fig. 2 provides an overview of the interactions between such
building blocks. In the test-bed, two realistic implementations
of cellular User Equipments (UEs), based on Open Air Inter-
face (OAI), act as vehicles. Each UE periodically sends the
information related to the position, speed, acceleration, and
direction of several emulated vehicles towards a third party
database, the CIM. In turn, the MEC-enabled EPC identifies
the EVS traffic directed towards the CIM and applies traffic
redirection to keep it at the edge. The EVS, which onboards the
trajectory-based algorithm that detects approaching vehicles
on a collision course, periodically retrieves the latest vehicle
information received by the CIM. When needed, the EVS
sends alerts towards the vehicles, exploiting again the same
traffic redirection rules that the MEC-enabled EPC used for
the uplink traffic.

A. A MEC platform based on OpenAirInterface

Our system builds on OpenAirInterface (OAI) [7], an open
source implementation of a full LTE network, spanning the

RAN and the EPC, with current developments focusing on 5G
technology. On top of this, we have implemented our MEC
platform, which exposes REST-based API endpoints to the
MEO and ME applications, so that they can discover, register,
and consume MEC services, including traffic redirection and,
in our case, the EVS applications.

We provide extensions to the OAI RAN and the core
network elements to implement the Mp2 reference points.
Core network extensions are necessary for traffic offloading
to ME application instances, while specific support is needed
at the RAN level for retrieving radio network information from
eNBs, such as per-UE channel quality indications (CQI), and
exposing them to subscribing ME applications.

The Mp2 interface towards the RAN is implemented using
the FlexRAN protocol [8], which is integrated into the stan-
dard OAI software distribution. For traffic management, we
have adopted the Control and User Plane Separation (CUPS)
paradigm introduced by the 3GPP [9]. CUPS proposes to
separate the data- and control-plane functions at the S/P-GW
level. The S/P-GW has been split into two entities: S/P-GW-C
and S/P-GW-U (C for control plane; U for user plane). The
former is in charge of managing the signalling in order to
establish the user data plane, while the latter is in charge of
forwarding the user plane data. In our implementation, the S/P-
GW-U is based on a version of OpenVSwitch (OVS), patched
to support GPRS Tunnelling Protocol (GTP) packet matching.
When requested over its Mp1 interface, the MEP installs
traffic rules on the S/P-GW-U to offload traffic to the MEC
applications by remotely executing OpenFlow commands. The
MEP needs to be aware of specific UE bearer information
(UE IMSI, GTP tunnel endpoint identifiers, UE and eNB IP
addresses) in order to appropriately install these rules. This
information is available at the S/P-GW-C level upon UE bearer
establishment, and we have modified the OAI EPC code to
communicate it to the MEP via its REST Mp2 interface.

In our MEC testbed, ME applications are running on the
MEC host as VMs directly on top of the kvm [10] hyper-
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visor. However, our MEC platform is also compatible with
VIMs such as OpenStack [11], while it has been tested with
containerized ME applications managed by lxd [12].

Fig. 2 presents our MEC testbed setup and the interactions
and interfaces between its components. The OAI EPC is
virtualized, with the HSS, MME, and SPGW running as
separate kvm VMs on a single physical machine, which also
hosts the MEP. Note that the latter can also be executed
as a virtual instance on the MEC host. Due to its real-time
constraints, the OAI eNB software runs on a dedicated host,
to which a USRP B210 RF board is attached.

B. Deployment of the service components as MEC applica-
tions

Next, we detail the procedures for the deployment of our
automotive service components as MEC applications on our
platform, from application preparation to instantiation and run-
time management.

1) Application preparation and onboarding: According to
the ETSI MEC standards, MEC applications are characterised
by an application descriptor (AppD) [13], which is prepared
by the service provider (in our case, the automotive verti-
cal) as part of an application package. The AppD is the
equivalent of a VNF descriptor (VNFD) in the ETSI NFV-
MANO context [14]. It provides information necessary for
application deployment, including a reference (URL) to the
actual application image, application latency requirements,
minimum requirements such as the amount of computing
resources that should be allocated for an application instance,
MEC services that the application exposes or consumes, and,
importantly, DNS rules and traffic filters. The latter ones define
the characteristics of the traffic that should be offloaded to
the MEC application instance (e.g., traffic flows matching a
specific protocol-destination and address-port tuple).

The vertical service provider submits an application package
for onboarding to the OSS/BSS via the Customer Facing Ser-
vice (CFS) Portal. The OSS/BSS then onboards the application
package to the MEC system by communicating with the MEO
over the standardized Mm1 reference point, thus making it
available for instantiation.

In our case, the vertical service is composed of two main
components (CIM and EVS), in turn broken down into
specific modules that can be run as independent services.
Our design does not preclude monolithic implementations,
where all components are (i) provided by the same entity, (ii)
bundled in a single package (software image) by the vertical,
and (iii) deployed in a single, standalone, MEC application
instance. However, this would limit deployment flexibility
and scaling capabilities. Furthermore, we expect that in a
real-world implementation the CIM will be provided by a
different entity, such as a transportation authority, and would
expose its information to other MEC applications (such as
our EVS service). Therefore, we opted for a micro-services
based implementation where each component is onboarded
and instantiated separately. As detailed later, appropriate,
standard-based service registration and discovery procedures
are used so that the application components (including those

aboard the vehicles) can discover and communicate with each
other.

In conclusion, in our vertical service design, the following
two MEC application packages should be provided:
• CIM package, integrating all the software related to

the CIM, including both the CAM receiver and the
Information Manager. The CIM features a modular de-
sign, with the CAM Receiver, Information Manager, and
other components operating as separate, networked sub-
services. Since one CIM instance is expected to be
active per monitored area, without significant scaling
requirements, we chose to package all its modules into a
single application.

• EVS package, including the EVS manager, the collision
detection algorithm, and the DENM Decider. Due to its
scaling requirements, the collision detection algorithm is
deployed as a separate application sub-package, whose
instances can be scaled in/out independently from the
others, when needed. The EVS manager and the DENM
Decider, instead, are built into a single application sub-
package.

We will provide further details on these packages in Sec-
tion IV-D.

2) Instantiation: After the application packages have been
onboarded, as per the request of the vertical over the CFS por-
tal, the OSS/BSS uses the Application Lifecycle Management
Interface of the MEO (Mm1 reference point) to instantiate
the CIM and the two EVS sub-packages. In each request, the
identifier of the respective application package is included,
according to the procedure described in ETSI MEC 010-2 [13].
The information that is included in the AppDs is used to
configure the MEP for traffic redirection, update the DNS
service of the MEC service, and register the necessary service
API endpoints of each component with the MEP.

3) Service discovery: Regarding the CIM, the following
requirements need to be satisfied:
• Since CIM virtual instances are created dynamically

within the MEC system and since each client, depending
on its location and the edge system covering it, needs
to deliver its CAMs to the CIM instance covering its
region, a mechanism has to be in place to steer CAMs
to the appropriate MEC instance; this needs to take place
transparently and with minimal UE involvement.

• The CIM service may be provided by a third party, such
as a transportation authority, and a single CIM instance
may have to provide its information to multiple EVS
instances. Therefore, upon the deployment of a CIM
MEC instance, its service endpoint needs to be registered
with the MEP, so that it can be discovered by EVS
applications.

To let vehicles discover the IP address of the CIM that
collects their CAM messages, we use a combination of stan-
dard DNS mechanisms and MEC capabilities. We reasonably
assume that the devices onboard vehicles are pre-programmed
to search for the CIM at a well-known DNS name. To encode
it, we use the appDNSRule field of the AppD. When the CIM
application is instantiated, the MEO will instruct the MEP(M)
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via the Mm3 reference point to update the MEC DNS database
with an entry to resolve the CIM name to the IP address of
the new MEC application instance.1

If, instead, the vehicular UEs are pre-programmed to com-
municate with a fixed CIM IP address (or receive this IP
address from a centralized control entity), we add specific
appTrafficRule entries in the AppD, so that appropriate
traffic redirection rules can be set up in the MEC platform.
In particular, this field allows specifying traffic filters that
can match specific flows, identified among others by service
IP address-port-protocol tuples. Upon service instantiation,
the MEO extracts appTrafficRules from the AppD and
communicates with the MEPM via the Mm3 interface to apply
them. The MEPM, in turn, accesses the MEP’s traffic rules
service (in our implementation, over a REST interface), and
the latter eventually applies them to the S/PGW-U over the
Mp2 reference point. This type of traffic steering builds on
SDN and is transparent to the UE: CAMs are sent to the well-
known IP address and port of the CIM, and the S/PGW-U
offloads the traffic to the IP address/port of the MEC instance
by applying packet-rewriting OpenFlow rules installed by the
MEP.

EVS instances, on the other hand, consume the CIM service
via the Mp1 interface. When the CIM is instantiated, the
MEO extracts the appServiceProduced field from the
AppD. This field provides a description of the service endpoint
exposed by the CIM, which the EVS Manager component
needs to access to consume the input to the collision detection
algorithm. Finally, the MEO adds the service to the MEP
Service Registry.

4) Scaling: The EVS collision detection algorithm is exe-
cuted under a stringent latency constraint, and its running time
depends on the number of vehicles in communication range.
Therefore, when this number increases so that the latency
constraint cannot be met any longer, more resources need to be
allocated to the algorithm. We address this situation by means
of an scaling out operation, i.e., by creating one or more addi-
tional application instances, each assigned a different, smaller,
coverage region, hence responsible for handling fewer CAMs.
However, and contrary to VNFs deployed in an ETSI MANO
environment, the ETSI MEC standard in its default, standalone
version2, does not directly support scaling, which is indeed an
innovative feature in real-world platforms. To enabling scaling
out while remaining compliant to the standard, we adopt the
following approach.

It is typically envisioned that the vertical is offered an entry
point to manage its application (e.g, a publicly accessible
IP address to connect to the EVS) via the CFP. This gives
the opportunity to execute application-specific management
software, which monitors the number of vehicles per region
and, when deemed appropriate, requests the instantiation of
a new collision detection algorithm instance. This follows
the standard MEC application instantiation procedure: the
(external) monitoring component will request the creation of

1This implies that vehicular UEs use the (local) MEC DNS to resolve the
domain name of the CIM. This is a fair assumption, since the UE DNS server
is assigned by the mobile network and MEC operator.

2I.e., not the MEC-in-NFV one.

the instance via the CFS, which will convey the request over
the Mx1 reference point to the OSS/BSS. The latter will finally
communicate with the MEO over Mm1 to create the new
instance3.

We remark that this method uses only standard-based ref-
erence points and procedures. In our testbed implementation,
we apply such an approach with just a small simplification:
the decision to scale in/out is taken directly by the DENM
Decider, which acts as an application-level orchestrator. This
component monitors the number of vehicles in the region it
controls, and communicates directly with the MEO to manage
the instantiation or termination of MEC applications via the
Mm1 functions.

C. Vehicle emulator

As mentioned, in our test-bed two UEs act as vehicles. The
mobility traces describing the pattern of all emulated vehicles
are obtained previously running the well known Simulation of
Urban MObility (SUMO) [15] tool. We sample the mobility
traces of each vehicle every 0.1 s (10 Hz) and we record key
information of vehicle movements, such as position, speed,
acceleration, and direction. For each obtained sample, we
create a CAM, which is transmitted towards the eNB of the
OAI cellular network.

The radio interface of the two UEs used in the test-bed
exploits a standard OAI UE implementation. Each UE is
emulated by a PC, equipped with an octa-core processor at
1.8 GHz and 16 GB RAM and connected to a USRP B210
RF board. Over-the-air communication is further improved by
a pass-band filter, which reduces undesired interference at the
receiver. Each UE also onboards the software for transmitting
CAMs and receiving DENMs (the latter being alert messages
sent by the EVS to the vehicles). This software, named
VehicleSimulator, is a C++ standalone Linux application. Fig.3
illustrates its architecture and its main software components.

Fig. 3: Architecture of the VehicleSimulator

The CAMTransmitter is the main class of the VehicleSimu-
lator. As the name suggests, the most important operation per-
formed by the CAMTransmitter is the transmission of CAMs.
In order to perform such an operation, the CAMTransmitter
receives as input a CSV file, where each line, containing the
transmission time and all other relevant information, represents

3The collision algorithm application instance is already onboarded the first
time the application is deployed at the edge.
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a single CAM. For each CAM, the CAMTransmitter stores the
corresponding CSV line in the RAM, in order to guarantee a
faster access to the information, and it starts a new thread that
manages the CAM creation. Such thread calls the CAMsg-
Codec class, which performs:
(i) the creation of the CAM structure, allocating memory

to each CAM field. Such structure is obtained by the
libMSG library of the open source CAM compiler ASN1
[16];

(ii) the parsing of the CSV line passed by the CAMTrans-
mitter;

(iii) the update of the CAM structure with the received
information;

(iv) the check of the consistency of the CAM structure with
the standards [17];

(v) The encoding of the CAM structure with the Unaligned
Packet Encoding Rule (UPER) to obtain the byte array
to transmit.

When ready, the CAMTransmitter sends the CAM via UDP
socket towards the eNB of the OAI cellular network and stores
the time instant at which such a transmission happens. Note
that the multi-thread structure of the CAMTransmitter allows
the encoding of CAMs at the millisecond time-scale, hence
the transmission of messages generated by multiple vehicles.

When a collision is detected, the EVS has to transmit a
DENM towards the involved vehicles, i.e., towards the UEs
where the vehicles are emulated. To send the CAMs to the
correct UE, the EVS exploits the fact that the CIM stores
also the IP address of each vehicle in the system. Within
the VehicleSimulator, the DENMCollector listens to a specific
port targeted by the EVS transmissions and decodes received
DENMs. To guarantee better performance, the DENMCol-
lector exploits two different threads. The first thread listens
to the UDP socket used by the EVS and it performs the
decoding and the storing of the DENMs in a dedicated queue
in the RAM. The second, instead, processes the information
in the queue where DENMs are stored and it records the
time needed by the VehicleSimulator to decode each DENM.
The boost C++ libraries have been used for socket operations
and for the queue structure, which is optimized for the single
producer/single consumer use case.

D. The automotive MEC service

We now provide more details on the two components of
the automotive MEC service: (i) the CIM package, which acts
as a collector of CAMs transmitted by the vehicles in the
monitored area (Sec. IV-D1), and (ii) the EVS package on-
boarding a trajectory-based algorithm, which aims at detecting
and notifying the risk of collision (Sec. IV-D2).

1) The CIM package: All CAMs originated by the two UEs
are redirected by the MEC-enabled EPC towards the CIM.
The CIM is an evolution of the Local Dynamic Map (LDM),
a facility standardized by ETSI that maintains information
influencing or influenced by road traffic and used to support
Intelligent Transportation Systems (ITS). Data can be received
from different sources, such as vehicles, infrastructure units,
traffic centres, personal ITS stations, and onboard sensors and

applications. The LDM offers mechanisms to grant secure ac-
cess to the stored data. For example, it can provide information
on the surrounding vehicles and Road Side Units (RSU) to
any authorized application that requests it. Following the same
concept, the CIM is a data storage located in a MEC host,
able to receive all information relevant to the EVS application
from vehicles traveling over a given area. As mentioned, the
structure of the CIM can be divided into two main blocks: the
CAM Receiver and the Information Manager. The CIM runs
in a virtualized environment with 2 cores at 3.6 GHz and 4
GB RAM.

The CAM Receiver, a C++ standalone application, whose
structure is represented in Fig. 4, performs the following main
operations: (i) it receives the encoded UPER CAMs messages
from the vehicles; (ii) it decodes the CAMs extracting the
vehicle data; (iii) it feeds the Information Manager forwarding
all the extracted data.

Fig. 4: The CAM Receiver architecture

The most important class of the CAM receiver is the CAM
collector class. Such class receives over an UDP socket the
CAM messages from the vehicles and, after decoding, it sends
the received information to the Information Manager through
the CIM Request object. Decoding of CAMs happens thanks
to the CAM Info class. At each CAM reception, a new thread
is started: a message is created and prepared for a UDP/TCP
connection to the Information Manager and the computation
time of the CAM reception operation is recorded.

Fig. 5: The Information Manager architecture

The Information Manager, whose structure is shown in
Fig. 5, is a standalone application with no User Interface
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(UI), implemented as a JAVA 8 runnable JAR file. The UI
is provided by a separated Web Portal implemented using
Tomcat 9. The Information Manager presents one input port
and an arbitrary number of output ports. The input port can
manage multi-thread connections and is used to receive CAM
messages from the CAM Receiver. The CIM can be configured
to manage a particular circular area (defined by the latitude,
longitude of the center, and by the radius of the circle). Only
the CAM messages coming from vehicles in this area are
handled, while all other messages are ignored. The input port
is also used by the Web Portal for configuring the Information
Manager.

The output ports can be created or disposed of from a
previously defined list while the CIM is running. Each output
port is managed by a module called CAM Manager that acts
as an agent capable of satisfying the queries of a specific CAM
consumer (i.e., a particular EVS instance). Each CAM man-
ager receives a copy of all CAMs collected by the Information
Manager from a module called CIM Manager. Furthermore,
CAM managers are configured to manage a circular sub-
area inside the monitored region (i.e. a crossroad under the
control of a particular EVS instance) and only the subset
of CAM messages inside such sub-areas is provided to the
corresponding CAM consumers (see Fig.6).

The Information Manager can manage two storage mech-
anisms. The first one, which is used by CAM managers,
allows the storage of the received CAM messages in the RAM
memory (volatile mechanism), while the second one, which
is optional, stores them in a PostgreSQL relational database
(persistent mechanism). The volatile mechanism provides a
faster access to the acquired CAM messages. As can be easily
guessed, the amount of memory needed to store CAM mes-
sages is directly proportional to the number of active vehicles
inside the area monitored by the CIM. Therefore, the volatile
mechanism satisfies the requirement of readiness, which is of
utmost importance for a collision detection algorithm, but it is
not suitable for other needs, e.g., statistical analysis on all the
messages acquired by the CIM. Using a PostGIS extension,
the persistent storage mechanism can easily support statistical
analysis through searches of messages inside geographical
areas. These results can, for example, improve either the
collision detection algorithm or the definition of the area under
the algorithm control, i.e., the area under the CAM Manager
control. In order to reduce the burden of the persistent storage
mechanism on the performance of the Information Manager, a
mechanism of multi-thread storage is implemented by the DB
Manager module. Specifically, a queue for storage sessions is
implemented and served when it is more convenient. Such an
approach has the effect that persistent storage is performed
with some delay and with the requirement of additional
available memory.

2) The EVS package: The scope of the EVS package is to
detect imminent collisions on a specific portion of the scenario
under the control of the CIM. In our implementation, the EVS
has been developed as a standalone C++ application, and it is
deployed on a dedicated VM (1 core at 3.6 GHz and 2 GB
RAM) in the MEC host. A summary of the structure of the
EVS package is shown in Fig. 7.

Fig. 6: An example of the map used for selecting the area
monitored by the CAM manager on the CIM Web Portal

Fig. 7: Structure of the EVS package

The most important component of the EVS package is the
so-called EVS Manager. The EVS manager can query a set of,
not necessarily all, CAM Managers at the CIM, specifically,
the ones covering the area of interest. Such implementation
choice is motivated by the assumption that the CIM belongs to
a transportation authority that does not run, but only responds
to, the EVS application.

The EVS requests the latest CAMs to the CAM managers
every 5ms over a dedicated TCP connection. Such a threshold
represents an optimal trade-off between the additional delay
due to sequential queries to the CIM and the computational
load of the EVS. CAMs are provided by the CIM in aggregate
form in JSON format, with each CAM passed as a string
field with a specific structure. The EVS manager interprets
the response of the CIM and passes the new CAMs, if any,
to the Collision Detector component. The Collision Detector
updates the trajectories of the vehicles whose CAMs have just
been received and compares them with the trajectories of all
known vehicles in the area, as per Algorithm 1. In order to
improve the system performance, not all the trajectories of
vehicles are compared. In particular, if the distance between
vehicles is larger than 2·vfast ·t2c (where vfast is the speed of
the fastest vehicle between the two), then the check is skipped.
Furthermore, to avoid considering the trajectories of vehicles
with obsolete information, at this stage, the Collision Detector
deletes from the memory all the vehicles whose last CAM was
received earlier than 0.8 s.

For each pair of vehicles identified as on a collision course,
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the Collision Detector creates a JSON with the relevant
information and passes it to the DENM Decider. After the
reception of the JSON data, the DENM Decider prepares and
transmits unicast DENM messages to the involved vehicles. In
order to avoid an excessive number of duplicated alerts, the
DENM Decider does not generate the same DENM message
for a given collision4 more than twice every 100ms. Such
a feature of the DENM Decider allows implementing simple
scale-out mechanisms for the EVS. In case the number of the
vehicles in the monitored area increases and the processing
time at the EVS does not meet the target latency constraint,
the area of interest can be split and covered by two instances
of the Collision Detector, instead of one. In this way, the
number of vehicles under the responsibility of a Collision
Detector instance decreases, as well as the processing time.
Furthermore, collision detection may be ensured allowing an
overlap region between the coverages of the two instances.
As implemented, such scale out mechanism is sustained by
the DENM Decider, since it can recognize and filter multiple
notifications related to the same collision, even if coming from
different Collision Detector instances.

The main classes of the DENM Decider are the DEN-
Manager and the DENMTransmitter. The former parses each
JSON received by the Collision Detector and generates the
values of the DENM fields; the latter manages the transmission
of DENMs. The DENMTransmitter, in order to transmit a
DENM, runs the DENMsgCodec class, the equivalent of the
CAMsgCodec described in subsection IV-C. Thus, this class
creates the DENM structure, updates it with the information
contained in the JSON, checks the consistency with the
standard, and finally encodes the DENM obtaining a byte
array. After these operations, the DENM can be transmitted
via UDP socket, through the eNB, and reaches the vehicle that
risks colliding.

V. PERFORMANCE METRICS

In this section, we present the different metrics we used in
our experiments to assess the performance of the MEC system
and of the two automotive MEC applications presented above.
Specifically, we present latency related metrics (Sec. V-A) and
metrics related to the ability of the EVS service to detect
collisions (Sec. V-B). Using such metrics, we compare our
MEC-based solution against a cloud-based implementation of
the EVS, i.e., without exploiting the MEC traffic redirection
rules and with the EVS and CIM packages running on a cloud
datacenter (Sec. VI).

4A collision is identified by its location and the set of colliding cars.

Fig. 8: End-to-end delay components

A. End-to-end delay and application processing times

To evaluate the ability of the EVS service to provide a
vehicle on a collision course with real-time information, we
use the end-to-end delay metric. The end-to-end delay is
computed considering only CAMs that trigger an alarm, and
it is defined as the time that elapses between the transmission
of a CAM by a vehicle and the reception, by the same vehicle,
of the alarm that such CAM triggered. I.e.,

De2e = Tn + Tc + Tw + Te (1)

where:
• Tn is the network latency due to the OAI network

component;
• Tc is the time needed for the CAM Receiver to decode a

CAM (encoded in UPER CAMs) and forward it toward
the Information Manager, plus the time needed for the
latter to store the message in its memory;

• Tw is the waiting time of the CAM, before being parsed
by the EVS. Since every 5 ms the EVS queries the
Information Manager, Tw may vary between 0 and 5 ms;

• Te is composed of the EVS processing time and the
DENM Decider processing time. The former is the time
needed to query the Information Manager for the CAMs
information fields, update internal tables with such infor-
mation, run the collision detection algorithm, and create
the JSON (for the DENM Decider) with the relevant
information to create the DENMs. The DENM processing
time is the time to receive the JSON from the EVS
and create the DENMs for the vehicles involved in the
detected collision.

Fig. 8 presents a summary of the above components. We
remark that, while network delays strongly depend on whether
the EVS/CIM packages run in the cloud or in the MEC,
the processing time of the applications depends only on the
computational resources assigned to them and on the incoming
traffic that needs to be processed. Therefore, to profile the
processing times of the EVS and the CIM, we also perform
tests varying the number of vehicles in the scenario.

B. Collision detection

To evaluate the ability of our EVS implementation to detect
imminent crashes in the area of interest, we first built a
ground truth for the collisions. Thanks to the SUMO error-
log file, for a specific mobility trace we obtain the actual
collisions between vehicles if no EVS is implemented. Since
the same mobility trace is also used in our test-bed, analyz-
ing the DENMs correctly delivered in the test-bed, we can
easily compute two fundamental performance metrics: (i) the
percentage of detected collisions, and (ii) the percentage of
false positives, i.e., the number of situations for which the
Collision Detector triggers an alarm, but that do not lead to
an actual collision. For both cases, i.e., collisions correctly
detected and false positives, we present results to gain insight
on the performance of our EVS.

Note that, if the alert for a collision was correctly trans-
mitted, we look at when it was received and processed by
the involved entities. In this way, we can determine if the
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Fig. 9: Screenshot of the simulated scenario in SUMO

vehicle had sufficient time to brake before the impact. Whether
a collision is detected in time or too late is determined in the
post-processing phase by considering the final position where
the involved vehicles stop. To do so, we retrieve the vehicles
position at the moment of the first DENM reception. Then we
focus on human-driven vehicles and account for the fact that
a driver cannot start braking as soon as an alert message is
received, for two different reasons: first, the vehicle human-to-
machine interface (HMI) needs some time to elaborate the alert
message; second, a human driver does not react immediately
to an alarm. We set the HMI time to 400 ms, and the human
reaction time to 1 s. Considering these two factors, we can
compute the position of the front bumper when a car stops,
given its current speed and maximum deceleration, hence
assess whether the collision was detected in time or not.

If instead the alert turns out to be a false positive, i.e.,
an alarm is raised but no collision occurs, we compute the
minimum distance between the trajectories of the two vehicles
involved. In such a way, we can understand how far from an
actual collision the involved vehicles were.

VI. PERFORMANCE EVALUATION

We now present the scenario we used for our performance
evaluation (Sec. VI-A) and the obtained results, namely, end-
to-end and processing latencies (Sec. VI-B), and collision
detection performance (Sec. VI-C).

A. Reference Scenario

Two UEs emulate flows of vehicles traveling on the roads
of the map shown in Fig.9. Vehicles traverse the scenario
from north to south (or viceversa), and from east to west (or
viceversa). Collisions happen only between vehicles crossing
each other’s path: no rear-end collisions are foreseen since
we focus on the EVS service for collision avoidance at
intersections. To simplify the DENM transmissions towards
the pair of vehicles involved in a collision, we use one of the
two UEs to emulate only vehicles in the north-south direction,
while we use the second UE to emulate the presence of
the vehicles travelling in the east-west direction. Finally, to
evaluate how performance changes with the number of cars
in the system, we consider three different values of vehicle

density: (i) high, i.e., 20 vehicles/km, (ii) medium, i.e., 14
vehicles/km, and (iii) low, i.e., 7 vehicles/km. The inter-
arrival times of vehicles into the system follows an exponential
distribution, with mean set to the aforementioned values in the
three different cases, respectively. For each vehicle density, we
performed 5 different runs of 300 seconds each. We set the
values of t2c and s2c to 3.5 s and 3.7m, respectively, which,
following the procedure outlined in [6], maximize the number
of correctly detected collisions in our scenario.

B. End-to-end and processing latencies

As described in Sec. V-A, the end-to-end delay consists
of three main components: (i) the network latency; (ii) the
CIM storage and processing times; (iii) the EVS detection
and DENM preparation times. Note that the only difference
between our EVS MEC implementation and the equivalent
EVS cloud implementation is represented by the network
latency. In order to account for the additional delay required
by the traffic to reach the CIM in a cloud server, we performed
two measurement campaigns. With our OAI UE, we first
pinged the CIM in the MEC 10,000 times and collected the
experienced network latency. Then, to evaluate the effect of
traversing a real cellular EPC to reach a cloud server, we
used a commercial smartphone to ping the Amazon datacenter
closest to Turin (the location of our test-bed), i.e., the one in
Paris [18]. Fig.10 presents the cumulative distribution function
(CDF) of the obtained network latency in the case of MEC
and cloud-based implementations.
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Fig. 10: CDF of the network latencies in the MEC and in the
cloud experiments

Interestingly, the delay difference between cloud and MEC
approximates a Gaussian distribution, with average 44.24ms
and standard deviation 8.36ms. Thanks to this result, we use
netem [19] for mimicking the effects of the cloud in our test-
bed. Specifically, when evaluating the performance of the EVS
application in the cloud, we introduce a Gaussian-distributed
additional delay at the ingress port of the CIM and at the egress
port of the EVS. The distribution of the total delay we added
to each packet conforms to the measured difference between
MEC and Cloud in our measurement campaigns.
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Fig. 11: CDF of the processing time of the EVS application

For what concerns the processing times, which statistically
are the same in the cloud and the MEC experiments, we
report in Fig.11 the CDF of the EVS processing time for the
three vehicle densities we selected. Increasing the number of
vehicles in the system clearly affects the performance of the
EVS. Indeed, latency increases on average by 50% as we move
from one vehicle density to the other. This is mainly due to
the fact that the number of trajectory comparisons done at the
EVS increases, and so does the processing time. Nevertheless,
even for the highest value of vehicle density, in 99.99% of the
cases, the EVS processes all CAMs and triggers all required
alarms before querying again the CIM, i.e., within 5ms.

Unlike the EVS processing times, the CIM processing times
are barely affected by the increase of vehicles managed by the
EVS application. Even in the case of high density, the worst-
case processing time at the EVS is below 0.5ms.

Finally, Fig.12 depicts the experimental CDF of the end-
to-end latency of our MEC and cloud-based implementations.
Each curve is obtained considering all DENMs received by
the vehicles in the 5 different runs performed for each vehicle
density. In our tests, the average number of collisions is
91 for the high-density case, 44.6 for the medium density,
and 11.2 for the low density. Given the algorithm used and
the parameters setting (i.e., the thresholds t2c and s2c), the
maximum number of DENMs that can be generated for a given
collision is 70. Indeed, in the best case, two cars on a collision
course start receiving DENMs t2c = 3.5 s in advance, once
for every CAM they transmit, i.e., two CAMs every 100ms.

In both end-to-end latency distributions, there is a dis-
crepancy between the summation of the four components we
presented above and the total latency. Such discrepancy is
mainly due to two reasons: (i) our EVS application does
not query the CIM as soon as a CAM is logged into the
corresponding CAM manager, but only once every 5ms; (ii)
the packets have to flow from a VM to another and such
latency is not taken into account in any of the components we
presented. On average, the observed discrepancy is 4.34ms
both for the cloud and the MEC implementation, which is in
line with the latency we expect for the two components we

cannot measure.
In all scenarios, in our MEC-based implementation, the

99.99% of the end-to-end latency values are below 50ms.
In particular, the average end-to-end latency is 29.55ms for
the low-density case, 29.89ms for the medium density, and
30.5ms for the high density. For our cloud-based implementa-
tion, instead, the end-to-end latency never drops below 50ms:
end-to-end latencies are on average 44ms larger than the
end-to-end latencies in the MEC-based implementation, which
exactly corresponds to the network latency differences.

To understand if the end-to-end latency achieved by our
implementation is good enough, we take as a reference the
cycle time of LIDAR sensors aboard vehicles. LIDAR sensors
typically refresh their information every 60ms [20] and, for
the information contained in the DENM to be coherent with
on-board sensors, the maximum end-to-end latency should not
exceed this value. As can be seen from Fig.12(left), our MEC
implementation is well within the cycle time of a LIDAR
sensor, even for the worst-case end-to-end latency in the high
density case. On the contrary, the cloud-based implementation
of the EVS application is constantly violating the 60ms bound,
meaning that the car may act upon obsolete information. As
a matter of fact, recently automotive companies are leaning
towards an even more stringent end-to-end latency for the
EVS applications, i.e., 20ms [21]. Such a latency is hardly
achievable with 4G networks, even with the support of a MEC
(see Fig.10), but it can be obtained using 5G cellular networks
which, for critical applications, are expected to provide end-
to-end latencies below 2ms [22]. Given the fact that the total
processing and communication times of our EVS and CIM
VMs are under 10ms in the worst case, we can conclude
that our implementation is also consistent with such stringent
latency requirement.

C. Collision detection performance

Thanks to the ground truth we built with the SUMO error-
log, we now check if our EVS application can detect all occur-
ring collisions. The result of our evaluation is that our MEC-
based application can alert in time all vehicles on a collision
course, and that all crashes are avoided, under all vehicle
densities. On the contrary, the cloud-based implementation
cannot detect on time two of the collisions that appear in the
groud-truth trace under high vehicle density, for the reasons
explained next.

Let us assume that our EVS application detects a collision
at t∗. If the CAM used to detect the collision by the EVS
was sent at tc ∈ [t∗ − t2c, t∗], then a DENM is transmitted
to the involved vehicles. For the collision to be detected on
time, between tc and t∗, we need the completion of a long list
of events. Firstly, all actions from the reception of the trig-
gering CAM to the delivery of the associated DENM (taking
De2e time) must be executed; additionally, the processing of
the received information by the vehicle and human-machine
interface (taking Dh, namely, 400 ms) must be completed; the
human driver’s reaction (taking Dr, namely, 1 s) must then be
taken into account; finally, the vehicle must be brought to a
halt (in a time Ds, which, given the maximum vehicle speed
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Fig. 12: CDF of the end-to-end delay for varying vehicle density, in the MEC-based (left) and in the cloud-based (right)
implementation
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Fig. 14: Distances between cars involved in false positive
detections: MEC vs. cloud

and deceleration in our settings, amounts to 1.85 s). Thus, we
have:

De2e +Dh +Dr +Ds < t∗ − tc ≤ t2c . (2)

Additionally, by ETSI standard, CAMs are sent with a peri-
odicity of 100 ms, thus, in the worst case, an offset as large
as 100 ms should be considered for the CAM transmission.
Given t2c = 3.5 s, it follows that De2e must be less than
150ms. Looking at Fig. 12, both the MEC and the cloud
implementation meet such requirement, however, for the MEC,
in the 99.9% of the cases the EVS application can use at
least two CAMs per vehicle for collision detection, even in
the high-density case. This translates into more updated and
reliable information on vehicle trajectories, as well as into
a higher resilience to packet loss. The same cannot be said
for the cloud implementation, where, with no losses, only
one CAM is received by the EVS application within the
above time limit, leading to the two missed collisions in
our experiments. Therefore, the larger network latency due
to the cloud implementation impairs the ability of the EVS
application to both achieve the reliability standards required
for automotive safety services and integrate virtual sensing
with traditional sensor measurements.

Finally, we look at the number of alarms unnecessarily
raised by the EVS service. The percentage of false positives is
almost as relevant as that of correctly detected collisions, since
a large number of unnecessary alerts may affect the drivers’
trust in the application. When we look at false positives, results
are consistent with what presented above. Fig.13 shows the
percentage of false positives obtained by the MEC and the
cloud implementation of the EVS, while Fig.14 depicts the
minimum distance between vehicles involved in situations that
led to false positives. The additional latency suffered by the
cloud version of our application causes a clear increase in
the percentage of alerts directed toward vehicles that will not
actually crash. Also, while in the MEC-based implementation
the minimum distance between vehicles involved in false
positive situations is always below 1m, in the cloud-based
implementation, such a value doubles.

In conclusions, our experiments show that the MEC is
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undoubtedly the key enabler for delay sensitive applications,
such as our EVS, while cloud-based implementations cannot
meet the automotive ultra-low latency requirements.

VII. RELATED WORK

Several works have dealt with applications in the automotive
domain (e.g., [23]). Many of them, such as [24] and [25],
propose collision avoidance and collision detection applica-
tions that do not leverage any mobile network infrastructure.
In particular, [24] focuses on collisions between vehicles
and pedestrians in industrial plants, with no specification of
what type of wireless communication technology is used. [25]
proposes instead a way to automatically detect a collision
after it has occurred, using smart-phone accelerometers to
reduce the time gap between the actual collision and the first
aid dispatch. An automotive application leveraging mobile
networks is [26], where vehicle collision detection is realized
using solely vehicle-to-vehicle communications. Unlike our
EVS framework, [26] relies on a continuously active direct
communication between vehicles, which is not always avail-
able in urban environments.

Recently, cellular networks have emerged as a primary
supporting infrastructure for the automotive domain. A con-
siderable body of works, e.g., [27]–[29], perform compar-
isons between IEEE 802.11p and the standard LTE (non-
V2V) network for vehicular applications. In particular, [27]
highlights the higher capacity, coverage, and penetration of
LTE with respect to 802.11p, which is also affected by scarce
scalability and unreliable transmissions. [29] confirms these
observations stating that LTE offers superior network capacity
with respect to 802.11p and is suitable for all case studies.
On the contrary, [28] considers LTE unsuitable for vehicle
collision detection, due to the issues caused by the Doppler
effect and LTE handoff procedures. The choice of the best
communication technology is still the subject of an intense
debate in the scientific community.

As far as MEC is concerned, an extensive body of works
has studied MEC architectures (e.g., [30]) and developed
analytical models, but concrete MEC system implementations
are scarce. As an example, several theoretical works have
addressed the design and dimensioning of MEC with the aim
to maximize the amount of supported traffic [31], minimize
service latency [32], or do both things for IoT applications
[33]. Other works have addressed, again through analytical
models, VNF placement within the MEC [34], as well as cloud
and MEC-enabled access networks, see, e.g., [35], [36].

As far as experimental work is concerned, Subramanya et
al. [37] present the design and implementation of a MEC
platform with the goal of requiring no modifications at the
RAN and EPC. Their approach is to maintain the necessary
UE context information to carry out traffic steering by in-
tercepting the S1 control plane traffic (S1-C) between the
eNB and the MME, during UE attachment and handovers.
CDS-MEC [38] also applies a similar approach to avoid any
interaction between the EPC and the mobile edge system.
However, we argue that currently it is not possible to have
full MEC functionality in a way transparent to the network,

for the following two reasons: (i) If S1-C traffic is encrypted,
this approach does not directly work, since it is not possible
to intercept the S1-C messages to monitor the necessary UE
state at the MEC platform level; (ii) one of the main MEC
platform services is the RNIS: without having an interface to
the RAN (part of the Mp2 reference point), it is not possible
to retrieve real-time radio network information from the eNBs,
and this interface is not standardized. Therefore, we opted for
a solution that requires a set of necessary extensions at the
EPC and eNB levels to implement the Mp2 interface, which
tailors our solution to OAI, particularly regarding the RAN
part. Our work bears more similarities with LL-MEC [39], a
MEC design also focused on OAI. As in our case, LL-MEC
uses SDN techniques for control/user plane separation, as well
as the same southbound protocol [8] to retrieve RAN-level
information from OAI eNBs. Aside from other implemen-
tation differences (e.g., different Mp2 interface towards the
EPC control/user planes), our MEC system further includes
a standard-compliant implementation of the Mm1 reference
point of the MEO towards the OSS/BSS, an RNIS interface
that fully complies with ETSI MEC 012 [3], and platform
components for MEC service discovery and registration. In
summary, the following aspects and technologies developed
in our work are totally original:
• MEP and its services and interfaces, in particular our Mp2

interface towards the EPC, are different from those used
in other works [37]–[39], and the service registration and
discovery features of our MEC platform are novel;

• MEO exposing the Mm1 interface to the OSS/BSS, as
specified in ETSI MEC 010-2 [13]. This is a critical
interface, since it is the entry point to the MEC system,
allowing for MEC application onboarding, instantiation,
and life-cycle management;

• the overall EVS service, collision detection algorithm,
as well as our proposed mechanisms to support service
scaling at the mobile edge.

Finally, we mention that a preliminary version of this work
has been presented in our conference paper [40].

VIII. CONCLUSION

The provision on a global scale of low-latency communica-
tion services to vehicular applications will soon be realized by
the deployment of 5G networks and the exploitation of edge
infrastructure such as MEC. Such a technological enabler will
be a key in the development of sophisticated road safety appli-
cations, exploiting the heightened awareness coming not only
from on-board sensors, but also from information provided
by the mobile infrastructure about what other vehicles in the
surroundings are doing. One example of such an application
is intersection control, aiming at reducing the risk of vehicle
collision. In this paper, we have presented a MEC-based
architecture and its test-bed implementation, supporting an
Extended Virtual Sensing system and implementing a collision
detection algorithm that leverages vehicular-to-infrastructure
communication to alert drivers of potential, impending crashes.
A hardware-in-the-loop simulation campaign has allowed us
to identify the deployment parameters and it has shown
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the effectiveness of our approach in avoiding collisions and
stopping vehicles well clear of their potential crash.
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