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ABSTRACT

We derive the luminosity function φ(L) and redshift distribution Ψ(z) of short gamma-ray bursts (SGRBs) using all the available
observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs
and the rest-frame properties of a complete sample of SGRBs detected by Swift. We show that a steep φ(L) ∝ L−α with α ≥ 2.0
is excluded if the full set of constraints is considered. We implement a Markov chain Monte Carlo method to derive the φ(L) and
Ψ(z) functions assuming intrinsic Ep − Liso and Ep − Eiso correlations to hold or, alternatively, that the distributions of intrinsic peak
energy, luminosity, and duration are independent. To make our results independent from assumptions on the progenitor (NS−NS
binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift
distribution of the population of SGRBs. We find that a relatively flat luminosity function with slope ∼0.5 below a characteristic break
luminosity ∼3 × 1052 erg s−1 and a redshift distribution of SGRBs peaking at z ∼ 1.5−2 satisfy all our constraints. These results also
hold if no Ep − Liso and Ep − Eiso correlations are assumed and they do not depend on the choice of the minimum luminosity of the
SGRB population. We estimate, within ∼200 Mpc (i.e. the design aLIGO range for the detection of gravitational waves produced
by NS−NS merger events), that there should be 0.007−0.03 SGRBs yr−1 detectable as γ-ray events. Assuming current estimates of
NS−NS merger rates and that all NS−NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening
angle of SGRBs 〈θjet〉 ∼ 3◦−6◦. The luminosity function implies a prompt emission average luminosity 〈L〉 ∼ 1.5×1052 erg s−1, higher
by nearly two orders of magnitude than previous findings in the literature, which greatly enhances the chance of observing SGRB
“orphan” afterglows. Effort should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.

Key words. gamma-ray burst: general – gravitational waves – methods: numerical

1. Introduction

The population of short gamma-ray bursts (SGRBs) is still
poorly understood owing to the relatively few events with mea-
sured redshift (see e.g. Berger 2014; D’Avanzo 2015, for re-
cent reviews). Available information is rather sparse, but the
low density of the close circumburst medium (Fong & Berger
2013; Fong et al. 2015), the variety of galaxy morphologies
(e.g. D’Avanzo 2015), the lack of any associated supernova in
the nearby SGRBs, and the possible recent detection of a “kilo-
nova” (Eichler et al. 1989; Li & Paczyński 1998; Yang et al.
2015; Jin et al. 2016, 2015) signature (Berger et al. 2013; Tanvir
et al. 2013), all hint to an origin from the merger of two compact

objects (e.g. double neutron stars) rather than from a single mas-
sive star collapse.

However, the prompt γ-ray emission properties of SGRBs
(Ghirlanda et al. 2009, 2015a) and the sustained long-lasting
X-ray emission (although not ubiquitous in short GRBs;
Sakamoto & Gehrels 2009) and flaring activity suggest that the
central engine and radiation mechanisms are similar to long
GRBs. Although they are still based on a few breaks in the op-
tical light curves, it seems that SGRBs also have jets: Current
measures of θjet are between 3◦ and 15◦, while lower limits seem
to suggest a wider distribution (e.g. Berger 2014; Fong et al.
2015). Recently, it has been argued that the customary divid-
ing line at T90 = 2 s between short and long GRBs provides a
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correct classification for Fermi and CGRO GRBs, but it is some-
what long for Swift bursts (Bromberg et al. 2013).

A renewed interest in the population of SGRBs is follow-
ing the recent opening of the gravitational wave (GW) “win-
dow” by the LIGO-Virgo discovery of GW150914 (Abbott et al.
2016d) and by the most recent announcement of another event,
GW151226, detected within the first data acquisition run (Abbott
et al. 2016b,d). Although no electromagnetic (EM) counterpart
has been identified within the large localization region of this
event, there are encouraging prospects that forthcoming GW
discoveries will have an EM−GW association, thanks to the
aLIGO-Virgo synergy and worldwide efforts for ground- and
space-based follow-up observations.

If the progenitors are compact object binary mergers
(NS−NS or NS−BH; e.g. Giacomazzo et al. 2013), SGRBs are
one of the most promising electromagnetic counterparts of GW
events detectable by advanced interferometers. Other EM coun-
terparts are expected in the optical (Metzger & Berger 2012),
X-ray (Siegel & Ciolfi 2016a,b; Rezzolla & Kumar 2015) and
radio bands (Hotokezaka et al. 2016). The rate of association
of GW events with SGRBs is mainly determined by the rate of
SGRBs within the relatively small horizon set by the sensitiv-
ity of the updated interferometers aLIGO and Advanced Virgo
(Abbott et al. 2016e). However, current estimates of local SGRB
rates range from 0.1−0.6 Gpc−3 yr−1 (e.g. Guetta & Piran 2005,
2006) to 1−10 Gpc−3 yr−1 (Guetta & Piran 2006; Guetta &
Stella 2009; Coward et al. 2012; Siellez et al. 2014; Wanderman
& Piran 2015) to even larger values, e.g. 40−240 Gpc−3 yr−1

(Nakar et al. 2006; Guetta & Piran 2006)1.
Such rate estimates mainly depend on the luminosity func-

tion φ(L) and redshift distribution Ψ(z) of SGRBs. These func-
tions are usually derived by fitting the peak flux distribution of
SGRBs detected by BATSE (Guetta & Piran 2005, 2006; Nakar
et al. 2006; Hopman et al. 2006; Salvaterra et al. 2008). Owing
to the degeneracy in the parameter space (when both φ(L) and
Ψ(z) are parametric functions), the redshift distribution was com-
pared with that of the few SGRBs with measured z. The lumi-
nosity function φ(L) is typically modelled as a single or bro-
ken power law, and in most cases it is found to be similar to
that of long GRBs (i.e. proportional to L−1 and L−2 below and
above a characteristic break ∼1051−52 erg s−1; Guetta & Piran
2006; Salvaterra et al. 2008; Virgili et al. 2011; D’Avanzo et al.
2014, hereafter D14) or even steeper (L−2 and L−3; Wanderman
& Piran 2015, hereafter WP15). Except for the mainstream,
Shahmoradi & Nemiroff (2015) modelled all the distributions
with lognormal functions.

The redshift distribution Ψ(z) (the number of SGRBs per
comoving unit volume and time at redshift z) has always been
assumed to follow the cosmic star formation rate with a delay
which is due to the time necessary for the progenitor binary sys-
tem to merge. With this assumption, various authors derived the
delay time τ distribution, which could be a single power law
P(τ) ∝ τ−δ (e.g. with δ = 1−2; Guetta & Piran 2005, 2006; D14;
WP15) with a minimum delay time τmin = 10−20 Myr, or a
peaked (lognormal) distribution with a considerably large delay
(e.g. 2−4 Gyr, Nakar & Gal-Yam 2005; WP15). Alternatively,
the population could be described by a combination of prompt
mergers (small delays) and large delays (Virgili et al. 2011)
or to the combination of two progenitor channels, i.e. binaries

1 These rates are not corrected for the collimation angle, i.e. they rep-
resent the fraction of bursts whose jets are pointed towards the Earth
which can be detected as γ-ray prompt GRBs.

formed in the field or dynamically within globular clusters (e.g.
Salvaterra et al. 2008).

Many past works feature a common approach: parametric
forms are assumed for the compact binary merger delay time dis-
tribution and for the SGRB luminosity function; free parameters
of such functions are then constrained through the small sample
of SGRBs with measured redshifts and luminosities and through
the distribution of the γ-ray peak fluxes of SGRBs detected
by past and/or present GRB detectors. A number of other ob-
server frame properties, though, are available: fluence distribu-
tion, duration distribution, observer frame peak energy. The last
of these have been considered in Shahmoradi & Nemiroff (2015)
which, however, lacks a comparison with rest-frame properties
of SGRBs as is done in this article. Another issue was the com-
parison of the model predictions with small and incomplete sam-
ples of SGRBs with measured z. Indeed, only recently has D14
worked with a flux-limited complete sample of SGRBs detected
by Swift.

The aim of this paper is to determine the redshift distribu-
tion Ψ(z) and the luminosity function φ(L) of the population of
SGRBs, using all the available observational constraints of the
large population of bursts detected by the Fermi-Gamma Burst
Monitor (GBM) instrument. These constraints are (1) the peak
flux; (2) the fluence; (3) the observer frame duration; and (4) the
observer frame peak energy distributions. We also consider as
constraints (5) the redshift distribution; (6) the isotropic energy;
and (7) the isotropic luminosity of a complete sample of SGRBs
detected by Swift (D14). This is the first work aimed at deriving
φ(L) and Ψ(z) of SGRBs, which considers constraints 2−4 and
6−7. Moreover, we do not assume any delay time distribution
for SGRBs, but derive directly, for the first time, their redshift
distribution by assuming a parametric form.

In Sect. 2 we describe our sample of SGRBs without
measured redshifts detected by Fermi/GBM, which provides
observer-frame constraints 1−4, and the complete (though
smaller) sample of Swift SGRBs of D14, which provides rest-
frame constraints 5−7. One of the main results of this paper is
that the φ(L) of SGRBs is flatter than has been claimed in the
literature: by extending standard analytic tools present in the lit-
erature, we show in Sect. 3 that a steep φ(L) is excluded when
all the available constraints (1−7) are considered. In Sect. 4 we
employ a Monte Carlo code to derive the parameters describing
the φ(L) and Ψ(z) of SGRBs. In Sects. 5 and 6 the results on the
φ(L) and Ψ(z) of SGRBs are presented and discussed, respec-
tively. In Sect. 7 we compute the local rate of SGRBs, and dis-
cus our results in the context of the dawning GW era. We assume
standard flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and
Ωm = 0.3 throughout the paper.

2. Sample selection

As stated in the preceding section, the luminosity function and
redshift distribution of SGRBs have been derived by many au-
thors by taking into account the following two constraints:

1. the peak flux distribution of large samples of SGRBs de-
tected by CGRO/BATSE or Fermi/GBM;

2. the redshift distribution of the SGRBs with measured z.

However, a considerable amount of additional information on
the prompt γ-ray emission of SGRBs can be extracted from the
BATSE and GBM samples. In particular, we can learn more
about these sources by considering the distributions of

3. the peak energy Ep,o of the observed νFν spectrum;
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4. the fluence F;
5. the duration T90.

Moreover, for the handful of events with known redshift z, we
have also access to the2

6. isotropic luminosity Liso;
7. isotropic energy Eiso.

2.1. Observer-frame constraints: Fermi/GBM sample

For the distributions of the observer frame prompt emission
properties (constraints 1, 3, 4, 5) we consider the sample of
1767 GRBs detected by Fermi/GBM (from 080714 to 160118)
as reported in the online spectral catalogue3. It contains most
of the GRBs published in the second spectral catalogue of
Fermi/GBM bursts (relative to the first four years) (Gruber et al.
2014), plus events detected by the satellite in the last two years.
Of these bursts, 295 in the sample are SGRBs (i.e. with T90 ≤

2 s). According to Bromberg et al. (2013), for both the Fermi and
CGRO GRB populations, this duration threshold should limit the
contamination from collapsar-GRBs to less than 10% (see also
WP15).

We only select bursts with a peak flux (computed on
64 ms timescale in the 10−1000 keV energy range) larger than
5 ph cm−2 s−1 in order to work with a well-defined sample, less
affected by the possible incompleteness close to the minimum
detector flux. With this selection, our sample reduces to 211
SGRBs detected by Fermi/GBM in 7.5 yr within its field of view
of ∼70% of the sky.

We consider the following prompt emission properties of the
bursts in the sample to be used as constraints of our population
synthesis model:

– the distribution of the 64 ms peak flux P64 (integrated in the
10−1000 keV energy range). This is shown by black symbols
in the top left panel of Fig. 1;

– the distribution of the observed peak energy of the prompt
emission spectrum Ep,o (black symbols, bottom left panel in
Fig. 1);

– the distribution of the fluence F (integrated in the
10−1000 keV energy range) (black symbols, bottom middle
panel in Fig. 1);

– the distribution of the duration T90 of the prompt emission
(black symbols, bottom right panel in Fig. 1);

Short GRB spectra have a typical observer frame peak en-
ergy Ep,o distribution (e.g. Ghirlanda et al. 2009; Nava et al.
2011b; Gruber et al. 2014) centred at relatively large values
(∼0.5−1 MeV), as is also shown by the distribution in the bottom
left panel of Fig. 1. For this reason, we adopt here the peak flux
P64 and fluence F computed in the wide 10−1000 keV energy
range as provided in the spectral catalogue of Fermi bursts rather
than the typically adopted 50−300 keV peak flux (e.g. from the
BATSE archive), which would sample only a portion of the full
spectral curvature.

The distributions of the peak flux, fluence, peak energy, and
duration are shown in Fig. 1 with black symbols. Error bars are

2 For the sake of tidiness, throughout this work we will sometimes drop
the “iso” subscript, so that Liso and Eiso will be equivalently be written
as L and E. For the same reason, the peak energy Epeak,obs (Epeak,rest) of
the νF(ν) spectrum in the observer frame (in the local cosmological rest
frame) will be sometimes written as Ep,o (Ep).
3 https://heasarc.gsfc.nasa.gov/W3Browse/fermi/
fermigbrst.html

computed by resampling each measurement (P, F, Ep,o, and T90)
within its error with a normal distribution. For each bin, the ver-
tical error bars represent the standard deviation of the bin heights
of the resampled distributions.

2.2. Rest-frame constraints: Swift SBAT4 sample

For the redshift distribution and the rest frame properties of
SGRBs (constraints 2, 6, and 7) we consider the sample pub-
lished in D14. It consists of bursts detected by Swift, selected
with criteria similar to those adopted for the long GRBs in
Salvaterra et al. (2012), with a peak flux (integrated in the
15−150 keV energy range and computed on a 64 ms timescale)
P64 ≥ 3.5 photons cm−2 s−1. This corresponds to a flux which
is approximately four times larger than the Swift-BAT minimum
detectable flux on this timescale; hereafter we call this sample
SBAT4 (Short BAT 4). The redshift distribution of the SBAT4
sample is shown in the top right panel of Fig. 1 (solid black
line). Within the SBAT4 sample we consider the 11 GRBs with
known z and determined Liso and Eiso (the distributions of these
quantities are shown in the inset of Fig. 1, top right panel, with
black and grey lines respectively). The grey shaded region is
spanned by the distribution when the five SGRBs in the sample
with unknown z are all assigned the minimum or the maximum
redshift of the sample.

3. The φ(L) and Ψ(z) of SGRBs

Given the incompleteness of the available SGRB samples, par-
ticularly with measured z, no direct method (as for the popula-
tion of long GRBs; see e.g. Pescalli et al. 2016) can be applied
to derive the shape of the SGRB luminosity function φ(L) and
redshift distribution Ψ(z) from the observations. The typical ap-
proach in this case consists in assuming some simple analytical
shape for both functions, with free parameters to be determined
by comparison of model predictions with observations.

For the luminosity function, a power law

φ(L) ∝ L−α (1)

or a broken power law

φ(L) ∝
{

(L/Lb)−α1 L < Lb
(L/Lb)−α2 L ≥ Lb

(2)

normalized to its integral is usually assumed.
If SGRBs are produced by the merger of compact ob-

jects, their redshift distribution should follow a retarded star
formation,

Ψ(z) =

∫ ∞

z
ψ(z′)P[t(z) − t(z′)]

dt
dz′

dz′, (3)

where ψ(z) represents the formation rate of SGRB progenitors
in Gpc−3 yr−1, and P(τ) is the delay time distribution, i.e. the
probability density function of the delay τ between the forma-
tion of the progenitors and their merger (which produces the
SGRB). Adopting the point of view that SGRBs are produced
by the coalescence of a neutron star binary (or a black hole-
neutron star binary), one can assume a delay time distribution
and convolve it with a ψ(z) of choice to obtain the corresponding
SGRB formation rate Ψ(z). Theoretical considerations and pop-
ulation synthesis (Portegies Zwart & Yungelson 1998; Schneider
et al. 2001; Belczynski et al. 2006; O’Shaughnessy et al. 2008;
Dominik et al. 2013) suggest that compact binary coalescences
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Fig. 1. Black dots show the distributions obtained from our Fermi/GBM and Swift SBAT4 samples (Sect. 2). Horizontal error bars are the bin
widths, while vertical error bars are 1σ errors on the bin heights accounting for experimental errors on single measurements. The results of our
Monte Carlo population synthesis code are shown by solid red lines (assuming Ep − Liso and Ep − Eiso correlations to hold in the population of
SGRBs) and by triple dot-dashed orange lines (assuming no correlation). Predictions based on the models of D14 and WP15 are shown by dashed
blue and dot-dashed cyan lines, respectively (the latter only in the first three panels; see text). These are obtained by the analytical methods of
Sect. 3.1. Top left panel: distribution of the peak flux P of the Fermi/GBM sample. Top right panel: normalized cumulative redshift distribution of
the SBAT4 sample. The grey shaded area represents the range spanned by the distribution if the remaining bursts with unknown z are assigned the
largest or the lowest z of the sample. The inset shows the cumulative distributions of the isotropic luminosity Liso (solid black line) and energy Eiso
(solid grey line) of the same sample. Bottom panels: from left to right, distributions of peak energy Ep,o, fluence, and duration of SGRBs of our
Fermi/GBM sample.

should typically follow a delay time distribution P(τ) ∝ τ−1 with
τ & 10 Myr. Equation (3) is actually a simplification, in that it
implicitly assumes that the fraction of newly formed stars that
will end up as members of a NS−NS binary is fixed. The ac-
tual fraction very likely depends on metallicity and on the initial
mass function, and thus on redshift in a statistical sense.

Among the most recent studies of the φ(L) and Ψ(z) of
SGRBs we consider the work of D14 and WP15 in the following
for comparison in more detail. D’Avanzo et al. (2014) assume a
power law shape for both the φ(L) and the delay time distribution
P(τ), and they adopt the parametric function of Cole et al. (2001)
for the cosmic star formation history, with parameter values from
Hopkins & Beacom (2006). They assume that SGRBs follow the
Ep − Liso correlation Epeak = 337 keV (Liso/2 × 1052 erg s−1)0.49

and that their spectrum is a Band function (Band et al. 1993)
with low and high energy photon spectral indices −0.6 and −2.3,
respectively. They constrain the free parameters by fitting the
BATSE peak flux distribution and the redshift distribution of
bright Swift short bursts with measured z. They find φ(L) ∝
L−2.17 between 1049 erg s−1 and 1055 erg s−1, and P(τ) ∝ τ−1.5

with a minimum delay of 20 Myr. The dashed blue lines in Fig. 1
are obtained through Eqs. (4) and (5) using the same parameters
as D14: their model (limited to Plim ≥ 5 ph cm−2 s−1 in order to
be compared with the sample selected in this work) reproduces
correctly the peak flux distribution (top left panel of Fig. 1) of

Fermi SGRBs and the redshift distribution of the bright SGRBs
detected by Swift (top right panel).

The preferred model for φ(L) in WP15 is a broken power
law, with a break at 2 × 1052 erg s−1 and pre- and post-break
slopes of −1.9 and −3.0, respectively. Their preferred models are
either a power law delay time distribution P(τ) ∝ τ−0.81 with a
minimum delay of 20 Myr or a lognormal delay time distribution
with central value 2.9 Gyr and sigma≤0.2. Differently from D14,
rather than assuming the Ep − Liso correlation they assign to all
SGRBs a fixed rest frame Ep,rest = 800 keV. The dot-dashed
cyan lines in Fig. 1 are the model of WP15 (for the lognormal
P(τ) case).

In the following we show how the results of WP15 and
D14, both representative of a relatively steep luminosity func-
tion, compare with the other additional constraints (bottom pan-
els of Fig. 1) that we consider in this work.

3.1. From population properties to observables

Given the two functions φ(L) and Ψ(z), the peak flux distribution
can be derived as

N(P1 < P < P2) =
∆Ω

4π

∫ ∞

0
dz

dV(z)
dz

Ψ(z)
1 + z

∫ L(P2,z)

L(P1,z)
φ(L)dL, (4)
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where ∆Ω/4π is the fraction of sky covered by the instru-
ment/detector (which provides the real GRB population with
which the model is to be compared) and dV(z)/dz is the differ-
ential comoving volume. The flux P corresponding to the lumi-
nosity L at redshift z is4

P(L, z, Epeak, α) =
L

4πdL(z)2

∫ ε2(1+z)
ε1(1+z) N(E|Epeak, α)dE∫ ∞

0 EN(E|Epeak, α)dE
, (5)

where dL(z) is the luminosity distance at redshift z and
N(E|Epeak, α) is the rest frame photon spectrum of the GRB.
The photon flux P is computed in the rest frame energy range
[(1 + z)ε1, (1 + z)ε2], which corresponds to the observer frame
[ε1, ε2] band.

The SGRB spectrum is often assumed to be a cut-off power
law, i.e. N(E|Epeak, α) ∝ E−α exp(−E(2 − α)/Epeak), or a Band
function (Band et al. 1993). Typical parameter values are α ∼ 0.6
(i.e. the central value of the population of SGRBs detected by
BATSE and Fermi − Ghirlanda et al. 2009; Nava et al. 2011b;
Goldstein & Preece 2010; Gruber et al. 2014) and, for the Band
function, β ∼ 2.3−2.5. The peak energy is either assumed fixed
(e.g. 800 keV in WP15) or derived assuming that SGRBs follow
an Ep−Liso correlation in analogy to long bursts (e.g. D14; Virgili
et al. 2011). Recent evidence supports the existence of such a
correlation among SGRBs (see e.g. D14; Calderone et al. 2015;
Tsutsui et al. 2013; Ghirlanda et al. 2009) with similar parame-
ters to those present in the population of long GRBs (Yonetoku
et al. 2004).

In order to compare the model peak flux distribution obtained
from Eq. (4) with the real population of GRBs, only events with
peak flux above a certain threshold Plim are considered. The in-
tegral in Eq. (4) is thus performed over the (L, z) range where the
corresponding flux is larger than Plim.

In D14 the assumption of the correlation (Ep − Liso) between
the isotropic luminosity Liso and the rest frame peak energy Ep
also allows us to derive, from Eq. (4), the expected distribution
of the observer frame peak energy Ep,o,

N(E1,p,o < E < E2,p,o) =

∫ ∞

0
dz C(z)

∫ L(E2,p,o,z)

L(E1p,o,z)
φ(L)dL, (6)

where Ep,o is the peak energy of the observed ν F(ν) spectrum,
and we let C(z) = [∆Ω/4π][Ψ(z)/(1 + z)][dV(z)/dz]. The limits
of the luminosity integral are computed by using the rest frame
correlation Ep = Y Lmy , namely

L(Ep,o, z) =

(
Ep

Y

)1/my

=

(
(1 + z)Ep,o

Y

)1/my

· (7)

In order to compare the distribution of Ep,o with real data, the
integral in Eq. (6), similarly to Eq. (4), is performed over val-
ues of L(Ep,o, z) corresponding to fluxes above the limiting flux
adopted to extract the real GRB sample (e.g. 5 ph cm−2 s−1 for
SGRBs selected from the Fermi sample).

Similarly, by assuming an Ep − Eiso correlation to hold in
SGRBs (see D14; Tsutsui et al. 2013; Amati 2006; Calderone
et al. 2015), i.e. Ep = A Ema , we can derive a relation between
luminosity and energy (Liso−Eiso), which reads

L(E) =

(A
Y

)1/my

Ema/my . (8)

4 The assumption of a spectrum is required to convert the bolometric
flux into a characteristic energy range for comparison with real bursts.

This is then used to compute the fluence distribution, where
the fluence is related to the isotropic energy as F = E(1 +
z)/4π dL(z)2,

N(F1 < F < F2) =

∫ ∞

0
dz C(z)

∫ L(E2)

L(E1)
φ(L)dL, (9)

again by limiting the integral to luminosities which correspond
to fluxes above the given limiting flux.

Finally, considering the spiky light curves of SGRBs, we can
assume a triangular shape and thus let 2E/L ∼ T in the rest frame
of the source. Therefore, it is possible to combine the Ep − Eiso
and Ep − Liso correlations to derive the model predictions for the
distribution of the duration to be compared with the observed
distribution,

N(T1,o < T < T2,o) =

∫ ∞

0
dz C(z)

∫ L(T2,o,z)

L(T1,o,z)
φ(L)dL, (10)

where

L(To, z) =

[(Y
A

)1/ma 2(1 + z)
To

]1/(1−my/ma)

· (11)

3.2. Excluding a steep luminosity function
The bottom panels of Fig. 1 show the distributions of peak en-
ergy Ep,o (left), fluence F (middle), and duration T90 (right) of
the sample of short Fermi GRBs described in Sect. 2 (black
symbols). Predictions using the same parameters as in D14 are
shown by dashed blue lines in Fig. 1: while the P and z distribu-
tions are correctly reproduced (top panels of Fig. 1), the model
is inconsistent with the distributions of peak energy Ep,o, flu-
ence F, and duration (bottom panels of Fig. 1). For the D14
model we have assumed the Ep − Eiso correlation reported in
that paper to derive the fluence and (in combination with the
Ep − Liso correlation) the duration distribution. Since WP15 as-
sume a unique value of the peak energy Ep,o, it is not possible
to derive the fluence and duration of their model unless inde-
pendent functions for these parameters are assumed. Therefore,
the model of WP15 (dot-dashed cyan line in Fig. 1) is compared
only in the peak flux, redshift (top panels), and observed peak
energy (bottom left panel of Fig. 1).

In conclusion, a steep φ(L) with either a power law distri-
bution of delay times favouring short delays (as in D14) or a
nearly unique long delay time (as in the log-normal model of
WP15) correctly reproduce the observer frame peak flux dis-
tribution of Fermi GRBs5 and the redshift distribution of Swift
bright short bursts. However, they do not reproduce the peak en-
ergy, fluence, and duration distributions of the same population
of Fermi SGRBs.

Motivated by these results, we implemented a Monte Carlo
(MC) code aimed at deriving the φ(L) and Ψ(z) of SGRBs which
satisfy all the constraints (1−7) described above. The reason to
choose a MC method is that it allows easy implementation of the
dispersion of the correlations (e.g. Ep − Liso and Ep − Eiso) and
of any distribution assumed (which are less trivial to account for
in an analytic approach as that shown above).

4. Monte Carlo simulation of the SGRB population

In this section we describe the Monte Carlo (MC) code adopted
to generate the model population. This population is then
5 Here we consider as a constraint the population of Fermi/GBM
GRBs. Nava et al. (2011a) showed that the BATSE SGRB population
has similar prompt emission properties of Fermi SGRBs (peak flux, flu-
ence, and duration distribution).
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i-th GRB

ϕ(Ep)

z

Ep - Eiso

Ep Eiso Liso

PF T

spectrum

Ep,o

Ep - Liso

Fig. 2. Scheme of the procedure followed in the MC to generate the
observables of each synthetic GRB.

compared with the real SGRB samples described above in or-
der to constrain the model parameters (Sect. 4). Our approach is
based on the following choices:

1. Customarily, Eq. (3) has been used to compute the redshift
distribution Ψ(z) of SGRBs from an assumed star formation
history ψ(z) and a delay time distribution P(τ). As stated in
Sect. 3, this approach implies simplifications that we would
like to avoid. To make our analysis as general as possible, we
adopt a generic parametric form for the redshift distribution
Ψ(z) of SGRBs. A posteriori, if one believes the progenitors
to be compact binaries, the delay time distribution can be re-
covered by direct comparison of our result with the star for-
mation history of choice. We parametrize the Ψ(z) following
Cole et al. (2001), namely

Ψ(z) =
1 + p1z

1 +
(
z/zp

)p2
, (12)

which has a rising and decaying part (for p1 > 0, p2 > 1)
and a characteristic peak roughly6 corresponding to zp;

2. In order to have a proper set of simulated GRB parameters,
it is convenient to extract Ep from an assumed probability
distribution. We consider a broken power law shape for the
Ep distribution:

φ(Ep) ∝


(
Ep/Ep,b

)−a1
Ep ≤ Ep,b(

Ep/Ep,b

)−a2
Ep > Ep,b.

(13)

Through the Ep−Liso and Ep−Eiso correlations, also account-
ing for their scatter, we can then associate with Ep a luminos-
ity Liso and an energy Eiso. The luminosity function of the
population is then constructed as a result of this procedure;

3. We assume the correlations Ep − Liso and Ep − Eiso and we
write them respectively as

log10(Ep/670 keV) = qY + mY log10(L/1052 erg s−1) (14)

6 The exact peak is not analytical, but a good approximation is zpeak ≈

zp

{
p2

[
1 + 1/

(
p1 zp

)]
− 1

}−1/p2 .

and

log10(Ep/670 keV) = qA + mA log10(Eiso/1051 erg). (15)

After sampling Ep from its probability distribution
(Eq. (13)), we associate with it a luminosity (resp. energy)
sampled from a lognormal distribution whose central value
is given by Eq. (14) (resp. 15) and σ = 0.2. There are still too
few SGRBs with measured redshift to measure the scatter of
the corresponding correlations. We assume the same scatter
as measured for the correlations holding for the population
of long GRBs (Nava et al. 2012);

4. For each GRB, a typical Band function prompt emission
spectrum is assumed, with low and high photon spectral
index −0.6 and −2.5, respectively. We keep these two pa-
rameters fixed after checking that our results are unaffected
by sampling them from distributions centred around these
values7.

For each synthetic GRB, the scheme in Fig. 2 is followed: a red-
shift z is sampled from Ψ(z) and a rest frame peak energy Ep
is sampled from φ(Ep); through the Ep − Liso (Ep − Eiso) corre-
lation a luminosity Liso (energy Eiso) with lognormal scatter is
assigned; using redshift and luminosity (energy), the peak flux P
(fluence F) in the observer frame energy range 10−1000 keV is
derived via the assumed spectral shape. The observer frame du-
ration T is obtained as 2(1+ z)E/L, i.e. the light curve is approx-
imated with a triangle8. Let us refer to this scheme as “case (a)”.

The minimum and maximum values of Ep admitted are
Ep,min = 0.1 keV and Ep,max = 105 keV. These limiting values
correspond to a minimum luminosity Lmin and a maximum lumi-
nosity Lmax which depend on the Ep − Liso correlation. While the
maximum luminosity is inessential (in all our solutions the high
luminosity slope α2 & 2), the existence of a minimum luminos-
ity might affect the observed distributions. We thus implemented
an alternative scheme (“case (b)”) where the minimum luminos-
ity Lmin is a parameter, and values of Ep which correspond to
smaller luminosities are rejected.

In order to investigate the dependence of our results on the
assumption of the Ep − Liso and Ep − Eiso correlations, we also
implemented a third MC scheme (“case (c)”) where independent
probability distributions (i.e., independent from the peak energy
and between themselves) are assumed for the luminosity and du-
ration. A broken power law

P(L) ∝
{

(L/Lb)−α1 L ≤ Lb
(L/Lb)−α2 L > Lb

(16)

is assumed for the luminosity distribution, and a lognormal
shape

P(Tr) ∝ exp

−1
2

(
(log(Tr) − log(Tc)

σTc

)2 (17)

is assumed for the rest frame duration Tr = T/(1 + z) prob-
ability distribution. Again, the energy of each GRB is com-
puted as E = LTr/2, i.e. the light curve is approximated with a
triangle.

7 We also made sure that our results are not sensitive to a slightly differ-
ent choice of the spectral parameters, i.e. low and high energy spectral
index −1.0 and −3.0, respectively.
8 This might seem a rough assumption, since SGRBs sometimes show
light curves with multiple peaks. Statistical studies, however, show that
the majority of SGRB light curves are composed of a few peaks, with
separation much smaller than the average duration (e.g. McBreen et al.
2001), which justifies the use of this assumption in a statistical sense.
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5. Finding the best fit parameters

In case (a) there are ten free parameters: three (p1, zp, p2) de-
fine the redshift distribution (Eq. (12)), three (a1, a2, Ep,b) define
the peak energy distribution (Eq. (13)), and four (qY,mY, qA,mA)
define the Ep−Liso and Ep−Eiso correlations (Eqs. (14) and (15)).
Our constraints are the seven distributions shown in Fig. 1 (in-
cluding the insets in the top right panel).

In order to find the best fit values and confidence intervals
of our parameters, we employed a Markov chain Monte Carlo
(MCMC) approach based on the Metropolis-Hastings algorithm
(Hastings 1970). At each step of the MCMC

– we displace each parameter9 pi from the last accepted value.
The displacement is sampled from a uniform distribution
whose maximum width is carefully tuned in order to avoid
the random walk remaining stuck in local maxima;

– we compute the Kolmogorov-Smirnov (KS) probability PKS,j
of each observed distribution to be drawn from the corre-
sponding model distribution;

– we define the goodness of fit G of the model as the
sum of the logarithms of these KS probabilities10, i.e.
G =

∑7
j=1 log PKS,j;

– we compare g = exp(G) with a random number r sampled
from a uniform distribution within 0 and 1: if g > r the set of
parameters is “accepted”, otherwise it is “rejected”.

We performed tests of the MCMC with different initial param-
eters, to verify that a unique global maximum of G could be
found. Once properly set up, 200 000 steps of the MCMC were
run. After removing the initial burn in, the autocorrelation length
of each parameter in the chain was computed, and the posterior
density distribution of each parameter (and the joint distribution
of each couple of parameters) was extracted with the getDist
python package11. The resulting 1D and 2D marginalized dis-
tributions are shown in Fig. 3, where black dashed (black dot-
dashed) lines indicate the position of the mean (mode) of the
marginalized density of each parameter. The filled contours rep-
resent the 68% (darker red) and 95% (lighter red) probability
areas of the joint density distributions. The means, modes, and
68% probability intervals of the 1D marginalized distributions
are summarized in Table 1a, where the corresponding luminos-
ity function parameters are also reported.

For the solution represented by the mean values in Table 1a,
the minimum luminosity is Lmin ∼ 1047 erg s−1. For comparison,
we tested case (b) fixing Lmin = 1050 erg s−1. This is the high-
est minimum luminosity that can be assumed, since the lowest
SGRB measured luminosity in the Swift sample considered is
L = 1.2 × 1050 erg s−1 (D14). Table 1b summarizes the results
of the analysis after 200 000 MCMC steps. The two cases are
consistent within one sigma. The best fit luminosity function in
case (b) is slightly shallower at low luminosities (i.e. there is a

9 For parameters corresponding to slopes, like mY and mA, we actu-
ally displace the corresponding angle φ = arctan(m), otherwise a uni-
form sampling of the displacement would introduce a bias towards high
(i.e. steep) slopes.
10 This is clearly only an approximate likelihood, since it implies an
assumption of independence of each distribution from the others, but
we tested that its maximization gives consistent results.
11 getDist is a python package written by Antony Lewis of the
University of Sussex. It is a set of tools to analyse MCMC chains and to
extract posterior density distributions using Kernel Density Estimation
(KDE) techniques. Details can be found at http://cosmologist.
info/notes/GetDist.pdf

Table 1. Summary of Monte Carlo Markov Chain results.

Parameter Mean Mode 68% C.I.
(a) Case with correlations and no minimum luminosity
a1 0.53 0.8 (0.2, 1)
a2 4 2.6 (1.9, 4.4)
Epeak,b 1600 1400 (880, 2000)
mY 0.84 0.69 (0.58, 0.88)
mA 1.1 0.91 (0.76, 1.2)
qY 0.034 0.068 (−0.069, 0.18)
qA 0.042 0.033 (−0.061, 0.13)
p1 2.8 1.8 (0.59, 3.7)
zp 2.3 2.7 (1.7, 3.2)
p2 3.5 1.7 (0.94, 4)
α1 0.53 0.88 (0.39, 1.0)
α2 3.4 2.2 (1.7, 3.7)
Lb 2.8 2.1 (0.91, 3.4)
(b) Case with correlations and minimum luminosity
a1 0.39 0.24 (−0.15, 0.8)
a2 3.5 2.5 (1.9, 3.7)
Epeak,b 1400 1100 (730, 1700)
mY 0.88 0.76 (0.61, 0.97)
mA 1.1 0.95 (0.77, 1.2)
qY 0.045 0.077 (−0.039, 0.17)
qA 0.043 0.053 (−0.037, 0.14)
p1 3.1 2.4 (1, 4.2)
zp 2.5 3 (1.9, 3.3)
p2 3 1.3 (0.9, 3.1)
α1 0.38 0.47 (0.034, 0.98)
α2 3 2.1 (1.7, 3.2)
Lb 2.3 1.5 (0.71, 2.8)
(c) Case with no correlations
a1 −0.61 −0.55 (−0.73,−0.41)
a2 2.8 2.5 (2.1, 2.9)
Epeak,b 2200 2100 (1900, 2500)
α1 −0.15 −0.32 (−1.5, 0.81)
α2 2.0 1.8 (1.2, 2.8)
Lb 0.63 0.79 (0.32, 1.6)
Tc 0.11 0.11 (0.084, 0.13)
σTc 0.91 0.90 (0.79, 1.0)
p1 3.1 2.0 (0.51, 4.1)
zp 2.5 2.8 (2.0, 3.3)
p2 3.6 2.0 (1.1, 3.7)

Notes. C.I. = confidence interval. Epeak,b, Lb and Tc are in units of keV,
1052 erg s−1 and s, respectively.

slight decrease in α1) than in case (a), and it remains much shal-
lower than in D14 and WP15.

Finally, we tested case (c) performing 200 000 MCMC steps.
In this case, there are 11 free parameters: three (p1, zp, p2)
for Ψ(z) and three (a1, a2, Ep,b) for φ(Ep) as before, plus
three (α1, α2, Lb) for the luminosity function (Eq. (16)) and
two (Tc, σTc) for the intrinsic duration distribution (Eq. (17)).
Consistently with case (a) and case (b) we assumed two bro-
ken power laws for φ(Ep) and φ(L). The results are listed in
Table 1c. We find that if no correlations are present between the
peak energy and the luminosity (energy), the luminosity func-
tion and the peak energy distributions become peaked around
characteristic values. This result is reminiscent of the findings of
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Fig. 3. Marginalized densities of our MCMC parameters in case (a) (i.e. with correlations and no minimum luminosity). Black dashed lines indicate
the means and black dot-dashed lines indicate the modes of the distributions.

Shahmoradi & Nemiroff (2015) who assumed lognormal distri-
butions for these quantities.

6. Discussion of the results

6.1. Luminosity function

In case (a) we find that the luminosity function is shallow (α1 =
0.53+0.47

−0.14, and flatter than 1.0 within the 68% confidence inter-
val) below a break luminosity ∼3 × 1052 erg s−1 and steeper
(α2 = 3.4+0.3

−1.7) above this characteristic luminosity. The mini-
mum luminosity ∼5 × 1047 erg s−1 is set by the minimum Ep
coupled with the Ep − Liso correlation parameters (see Sect. 4).

Similar parameters for the φ(L) are obtained in case (b), where
a minimum luminosity was introduced, thus showing that this
result is not strongly dependent on the choice of the minimum
luminosity of the φ(L).

If we leave out the correlations (case (c)), we find that the
distributions of the peak energy and luminosity are peaked.
However, the 68% confidence intervals of some parameters,
common to cases (a) and (b), are larger in case (c). In particu-
lar, the slope α1 of the luminosity function below the break is
poorly constrained, although this cannot be steeper than 0.81 (at
the 68% confidence level). We believe that the larger uncertainty
on the best fit parameters in case (c) is due to the higher freedom
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allowed by the uncorrelated luminosity function, peak energy
distribution, and duration distribution.

6.2. Redshift distribution

Figure 4 shows a comparison of our predicted redshift distri-
butions (case (a): red solid line; case (c): orange triple dot-
dashed line; mean values adopted) with the following redshift
distributions:

– the convolution of the Madau & Dickinson (2014, hereafter
MD14) star formation history (SFH) with the delay time dis-
tribution P(τ) ∝ τ−1 with τ > 20 Myr, grey dashed line (the
normalization is arbitrary);

– the redshift distribution of NS−NS mergers as predicted by
Dominik et al. (2013) (we refer to the standard binary evolu-
tion case in the paper) based on sophisticated binary popula-
tion synthesis, assuming two different metallicity evolution
scenarios: high-end (pink solid line) and low-end (pink dot-
ted line);

– the SGRB redshift distribution found by D14, which is ob-
tained convolving the SFH by Hopkins & Beacom (2006)
with a delay time distribution P(τ) ∝ τ−1.5 with τ > 20 Myr,
blue dashed line;

– the SGRB redshift distribution found by WP15, which
is obtained convolving an SFH based on Planck results
(“extended halo model” in Planck Collaboration XXX
2014) with a lognormal delay time distribution P(τ) ∝
exp

[
− (ln τ − ln τ0)2 /

(
2σ2

)]
with τ0 = 2.9 Gyr and σ < 0.2

(we used σ = 0.1), cyan dot-dashed line.

The redshift distribution by D14 peaks between z ∼ 2 and
z ∼ 2.5, i.e. at a higher redshift than the MD14 SFH (which
peaks at z ∼ 1.9). This is due to the short delay implied by the de-
lay time distribution assumed in D14, and because the Hopkins
& Beacom (2006) SFH peaks at higher redshift than the MD14
SFH. On the other hand, the redshift distribution by WP15 peaks
at very low redshift (∼0.8) and predicts essentially no SGRBs
with redshift z & 2 because of the extremely large delay implied
by their delay time distribution.

Assuming the MD14 SFH (which is the most recent SFH
available) to be representative, our result in case (a) seems to
be compatible with the P(τ) ∝ τ−1 delay time distribution (grey
dashed line), theoretically favoured for compact binary mergers.
In case (c), on the other hand, the redshift distribution we find
seems to be indicative of a slightly smaller average delay with
respect to case (a). Since the cosmic SFH is still subject to some
uncertainty, and since the errors on our parameters (p1, zp, p2)
are rather large, no strong conclusion about the details of the
delay time distribution can be drawn.

6.3. Ep – Liso and Ep – Eiso correlations

Our approach allowed us, in cases (a) and (b), to derive the
slope and normalization of the intrinsic Ep − Liso and Ep − Eiso
correlations of SGRBs. For the Ep−Eiso and Ep−Liso correlations
of SGRBs, Tsutsui et al. (2013) finds slope values of 0.63± 0.05
and 0.63 ± 0.12, respectively. Although our mean values for mY
and mA (Table 1) are slightly steeper, the 68% confidence in-
tervals reported in Table 1 are consistent with those reported by
Tsutsui et al. (2013). In order to limit the free parameter space,
we assumed a fixed scatter for the correlations and a fixed nor-
malization centre for both (see Eqs. (14) and (15)). This latter
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Fig. 4. Comparison between various predicted SGRB redshift distri-
butions. The grey dashed line represents the convolution of the MD14
cosmic SFH with a delay time distribution P(τ) ∝ τ−1 with τ > 20 Myr
(the normalization is arbitrary). The pink solid line (pink dotted line)
represents the redshift distribution of NS−NS binary mergers predicted
by Dominik et al. (2013) in their high end (low end) metallicity evolu-
tion scenario (standard binary evolution model). The blue dashed line
and cyan dot-dashed line are the SGRB redshift distributions according
to D14 and to WP15, respectively. The red solid line is our result in
case (a), while the orange triple dot-dashed line is our result in case (c).
In both cases we used the mean parameter values as listed in Table 1.

choice, for instance, introduces the small residual correlation be-
tween the slope and normalization of the Ep−Liso parameters (as
shown in Fig. 3).

Inspection of Fig. 3 reveals another correlation in the MCMC
chain between the normalizations qY and qA of the Ep − Liso and
Ep − Eiso correlations, which is expected because the ratio of the
two normalizations is linked to the duration of the burst. Indeed,
Eqs. (15) and (14) yield

qY − qA = log
(

EmA

LmY

)
+ 52mY − 51mA. (18)

Since mA and mY are close, the argument of the logarithm is
∼E/L ∝ T , and since there is a typical duration, this induces
an approximately linear correlation between qA and qY, which is
what we find.

7. Local SGRB rate

The local rate of SGRBs is particularly important for the possible
connection with gravitational wave events to be detected by the
advanced interferometers (Advanced LIGO − Aasi et al. 2015;
Abbott et al. 2016a; Advanced Virgo − Acernese et al. 2015).

The first such detection, named GW150914, has been inter-
preted according to general relativity as the space-time pertur-
bation produced by the merger of two black holes (with masses
M1 ∼ 29 M� and M2 ∼ 36 M�) at a distance of ∼410 Mpc
(z = 0.09). The full analysis of the aLIGO first run cycle revealed
a second binary black hole merger event, GW151226 (Abbott
et al. 2016b). In this case the involved masses are smaller (M1 ∼

14.2 M� and M2 ∼ 7.5 M�) and the associated distance is only
slightly larger (∼440 Mpc)12.

12 A third event, LVT151012, was reported in Abbott et al. (2016b) but
with a small associated significance implying an ∼87% probability of
being of astrophysical origin.
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Fig. 5. Event rates within redshift z: Solid red line
and triple dot-dashed orange line represent the
SGRB rates for case (a) and case (c) of this work,
respectively. The yellow shaded region represents
the 68% confidence level on the rate (red line)
of case (a). SGRB rates according to the mod-
els of D14 and WP15 are shown by the dashed
blue and dot-dashed cyan lines, respectively. The
rate of NS−NS mergers is shown by the hatched
pink region where the lower (upper) boundary
corresponds to the rate derived from population
synthesis models (Galactic binaries) in Dominik
et al. (2015) and Kim et al. (2015). The vertical
grey shaded regions show the present and design
ranges of aLIGO for NS−NS mergers. The upper
limit (white star) corresponds to the non-detection
of NS−NS mergers in the first 48.6 days of the
“O1” run of aLIGO. The green vertical bar is
the rate of binary BH mergers derived by Abbott
et al. (2016b) and shown here at the distance of
GW150914 and GW151226.

GW150914 represents a challenge for the theory of forma-
tion and evolution of stellar origin BHs (Abbott et al. 2016c;
Belczynski et al. 2016; Spera et al. 2015) being the most mas-
sive stellar-mass black hole observed so far. The masses of
GW151226 are close to those observed in galactic X-ray bina-
ries (Özel et al. 2010). Both sources are an exquisite direct probe
of general relativity in the strong field dynamical sector (Abbott
et al. 2016a).

Considering the detections resulting from the analysis of
the “O1” aLIGO interferometers, the rate of BH-BH merger
is 9−240 Gpc−3 yr−1, assuming different BH mass distributions
(Abbott et al. 2016b). For the sake of comparison, in Fig. 5 we
show this range of rates (vertical green bar) in yr−1 computed at
the distance of GW150914.

However, the best is yet to come in the field of GW. Indeed,
while no electromagnetic counterpart has been associated either
with GW150914 (Evans et al. 2016a; Troja et al. 2016; Smartt
et al. 2016a; Savchenko et al. 2016; Soares-Santos et al. 2016;
Annis et al. 2016; Kasliwal et al. 2016; Morokuma et al. 2016;
Ackermann et al. 2016, but see Connaughton et al. 2016; Perna
et al. 2016; Yamazaki et al. 2016; Zhang 2016; Morsony et al.
2016; Lyutikov 2016) or with GW151226 (Cowperthwaite et al.
2016; Smartt et al. 2016b; Adriani et al. 2016; Evans et al.
2016b; Copperwheat et al. 2016; Racusin et al. 2016), possible
future detections of GW produced by compact binary mergers
could lead to the first association of an electromagnetic with a
gravitational signal (Branchesi et al. 2011; Metzger & Berger
2012). In the case of NS−NS and NS−BH mergers, SGRBs are
candidates to search for among other possible counterparts in
the optical (Metzger & Berger 2012), X-ray (Siegel & Ciolfi
2016a,b), and radio bands (Hotokezaka et al. 2016).

There is a considerable number of predictions for the rate of
SGRBs within the horizon of GW detectors in the literature. The
rather wide range of predictions, extending from 0.1 Gpc−3 yr−1

to >200 Gpc−3 yr−1 (e.g. Guetta & Piran 2005, 2006), can be
tested and further constrained by forthcoming GW-SGRB asso-
ciations (Coward et al. 2014; Branchesi et al. 2012). If SGRBs
have a jet, one must account for the collimation factor, i.e.

Table 2. Short GRB rates in yr−1 (68% errors) within the volume corre-
sponding to different distances.

R D H

NS−NS ≤200 Mpc ≤300 Mpc ≤450 Mpc
Model (a) 0.007+0.001

−0.003 0.024+0.004
−0.007 0.077+0.014

−0.028

Model (c) 0.028+0.005
−0.010 0.095+0.017

−0.034 0.299+0.054
−0.108

NS−BH ≤410 Mpc ≤615 Mpc ≤927 Mpc
Model (a) 0.060+0.011

−0.022 0.20+0.035
−0.07 0.572+0.103

−0.206

Model (c) 0.232+0.042
−0.083 0.605+0.109

−0.218 1.158+0.208
−0.417

Notes. R = limiting distance for binary inspiral detection by aLIGO, av-
eraged over sky location and binary inclination, D = limiting distance
for a face-on binary, averaged on sky location, H = limiting distance
(horizon) for a face-on binary. Limiting distances are obtained consid-
ering the aLIGO design sensitivity to NS−NS or NS−BH inspirals (top
and bottom portions of the table, respectively).

multiply the rate by fb = 〈(1 − cos θjet)−1〉, in order to compare
such predictions with the compact binary merger rate. Once the
luminosity function and rate of SGRBs is determined, the frac-
tion of SGRBs above a limiting flux Pmin within a given redshift
z is

N(<z) =

∫ z

0
dz C(z)

∫
L≥L(Pmin,z)

φ(L)dL, (19)

where L(Pmin, z) represents − at each redshift z − the minimum
luminosity corresponding to the flux limit Plim (e.g. of a particu-
lar GRB detector).

Figure 5 shows the rate of SGRBs within a given redshift z
(zoomed up to z < 0.1). The different curves are obtained using
the formation rate Ψ(z) and luminosity function φ(L) by D14
and WP15 (shown by the dashed blue and dot-dashed cyan lines,
respectively) and the results of our case (a) (solid red line) and
case (c) (triple dot-dashed orange line).
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These curves represent the population of SGRBs detectable
in γ-rays by current flying instruments. At redshifts as low as
those shown in Fig. 5, even bursts populating the lowest end of
the luminosity function can be observed above the flux limits of
available GRB detectors (e.g. the Fermi/GBM). The Ψ(z) that we
derive (see Fig. 4) rises, below the peak, in a way similar to those
adopted in the literature (e.g. D14 and WP15). The lower rates
predicted by our models with respect to those of D14 and WP15
are thus mainly due to our flatter φ(L).

The distance within which aLIGO should have been able to
detect NS−NS mergers during “O1” was estimated to be 60–
80 Mpc, which corresponds to redshift z ∼0.014–0.0185 (dark
grey shaded region in Fig. 5) (Martynov et al. 2016). We use this
distance to define an upper limit on the NS−NS merger rate (star
symbol and arrow in Fig. 5), given the non-detection of any such
events in the 48.6 days of “O1” data (Martynov et al. 2016). If
SGRBs have a jet, and if the jet is preferentially launched in the
same direction as the orbital angular momentum, the inspiral of
the progenitor binary could be detected up to a larger distance
(up to a factor 2.26 larger, see Chassande-Mottin 2016) because
the binary is more likely to be face-on. Let us define the follow-
ing three typical distances:

– we indicate by R (range) the limiting distance for the de-
tection of a compact binary inspiral, averaged over all sky
locations and over all binary inclinations with respect to the
line of sight;

– we indicate by D (distance to face-on) the limiting distance
for the detection of a face-on compact binary inspiral, aver-
aged over all sky locations;

– we indicate by H (horizon) the maximum limiting distance
for the detection of a face-on compact binary inspiral, i.e.
the limiting distance at the best sky location.

Table 2 shows R, D, and H for both NS–NS binaries and BH–
NS binaries, corresponding to the design sensitivity of Advanced
LIGO, together with the expected rates of SGRBs (according
to our models (a) and (c)) within the corresponding volumes.
The local rate of SGRBs predicted by our model (a) is ρ0,a =
0.20+0.04

−0.07 yr−1 Gpc−3 and for model (c) ρ0,c = 0.8+0.3
−0.15 yr−1 Gpc−3.

The distance R for NS–NS binary inspiral at design aLIGO sen-
sitivity, which corresponds to 200 Mpc (z ≈ 0.045), is shown by
the vertical light grey shaded region in Fig. 5.

Figure 5 also shows the predictions of population synthesis
models for double NS merger (Dominik et al. 2015) or the esti-
mates based on the Galactic population of NS (Kim et al. 2015)
which bracket the pink dashed region in Fig. 5.

By comparing the SGRB models in Fig.5 with these puta-
tive progenitor curves, assuming that all NS–NS binary merg-
ers yield a SGRB, we estimate the average jet opening angle of
SGRBs as 〈θjet〉 ∼ 3◦−6◦ in case (a) (solid red line in Fig. 5)
and 5◦−10◦ in case (c). The local rates by D14 and WP15 in-
stead lead to an average angle 〈θjet〉 ∼ 7◦−14◦. These estimates
represent minimum values of the average jet opening angle, be-
cause they assume that all NS–NS binary mergers lead to a
SGRB. We note that our range is consistent with the very few
SGRBs with an estimated jet opening angle: GRB 051221A
(θjet = 7◦, Soderberg et al. 2006), GRB 090426 (θjet = 5◦,
Nicuesa Guelbenzu et al. 2011), GRB 111020A (θjet = 3◦−8◦,
Fong et al. 2012), GRB 130603B (θjet = 4◦−8◦, Fong et al.
2014), and GRB 140903A (Troja et al. 2016). Similarly to the
population of long GRBs (Ghirlanda et al. 2012), the distribu-
tion of θjet of SGRBs could be asymmetric with a tail extend-
ing towards large angles, i.e. consistently with the lower limits

claimed by the absence of jet breaks in some SGRBs (Berger
2014).

8. Conclusions

We derived the luminosity function φ(L), redshift distribution
Ψ(z), and local rate of SGRBs. Similarly to previous works
present in the literature, we fitted the properties of a synthetic
SGRB population, described by the parametric φ(L) and Ψ(z),
to a set of observational constraints derived from the population
of SGRBs detected by Fermi and Swift. Any acceptable model
of the SGRB population must reproduce their prompt emission
properties and their redshift distributions. Our approach features
a series of improvements with respect to previous works present
in the literature:

– (observer frame) constraints: We extend the classical set of
observational constraints (peak flux and – for a few events –
redshift distribution) requiring that our model should repro-
duce the peak flux P, fluence F, peak energy Ep,o, and dura-
tion T distributions of 211 SGRBs with P64 ≥ 5 ph s−1 cm−2

as detected by the GBM instrument on board the Fermi satel-
lite. The uniform response of the GBM over a wide energy
range (10 keV – few MeV) ensures a good characterization
of the prompt emission spectral properties of the GRB pop-
ulation and, therefore, of the derived quantities, i.e. the peak
flux and the fluence;

– (rest frame) constraints: we also require that our model re-
produces the distributions of redshift, luminosity, and en-
ergy of a small sample (11 events) of Swift SGRBs with
P64 ≥ 3.5 ph s−1 cm−2 (selected by D14). This sample is
70% complete in redshift and therefore it ensures a less pro-
nounced impact of redshift–selection biases in the results;

– method: we parametrize Ψ(z) as in Eq. (12) and derive
the redshift distribution of SGRBs independently from their
progenitor nature and their cosmic star formation history.
Instead, the classical approach depends (i) on the assump-
tion of a specific cosmic star formation history ψ(z) and (ii)
on the assumption of a delay time distribution P(τ);

– method: we derive our results assuming the existence of in-
trinsic Ep−Liso and Ep−Eiso correlations in SGRBs (case (a)),
similarly to what has been observed in the population of long
GRBs. However, since evidence of the existence of such cor-
relations in the population of SGRBs is still based on a lim-
ited number of bursts, we also explore the case of uncorre-
lated peak energy, luminosity and energy (case (c)).

Our main results are as follows:

1. The luminosity function of SGRBs (case (a)), which we
model with a broken power law, has a slope α1 = 0.53+0.47

−0.14
(68% confidence interval) below the break luminosity of
Lb = 2.8+0.6

−1.89 × 1052 erg s−1 and falls steeply above the
break with α2 = 3.4+0.3

−1.7. This solution is almost indepen-
dent from the specific assumption of the minimum luminos-
ity of the φ(L) (case (b)). Moreover, it implies an average
isotropic equivalent luminosity 〈L〉 ≈ 1.5 × 1052 erg s−1 (or
3 × 1052 erg s−1 in case (c)), which is much larger than e.g.
〈L〉 ≈ 3 × 1050 erg s−1 from D14 or 〈L〉 ≈ 4.5 × 1050 erg s−1

from WP15;

2. The redshift distribution of SGRBs Ψ(z) peaks at z ∼ 1.5
and falls rapidly above the peak. This result is intermediate
between those reported in the literature which assume either
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a constant large delay or a power law distribution favouring
small delays. We find that our Ψ(z) is consistent with the
MD14 SFH retarded with a power law delay time distribution
∝τ−1;

3. As a by-product we find that, if SGRBs feature intrinsic
Ep − Liso and Ep − Eiso correlations, they could be slightly
steeper than those derived with the current small sample of
short bursts with redshift (e.g. Tsutsui et al. 2013), but still
consistent within their 68% confidence intervals;

4. If we assume that there are no correlations between Ep,o and
Liso(Eiso) (case (c)), we find similarly that the φ(L) is flat
at low luminosities and the formation rate peaks at slightly
larger redshift (z ∼ 2);

5. We estimate the rate of SGRBs as a function of z within
the explorable volume of advanced LIGO and Virgo for
the detection of double NS mergers or NS–BH mergers.
Assuming the design aLIGO sensitivity averaged over sky
location and over binary orbital plane orientation with re-
spect to the line of sight, NS–NS mergers can be detected up
to 200 Mpc (410 Mpc for NS–BH mergers). This is usually
referred to as the detection range for these binaries. The rate
of SGRBs within the corresponding volume is ∼7×10−3 yr−1

(0.028 yr−1 for NS–BH merger distance), assuming the ex-
istence of Ep − Liso and Ep − Eiso correlations for the pop-
ulation of short bursts (model (a)). Rates larger by a factor
of ∼4 are obtained if no correlation is assumed (model (c)).
If binaries producing observable SGRBs are preferentially
face-on (which is the case if the GRB jet is preferentially
aligned with the orbital angular momentum), then the actual
explorable volume extends to a somewhat larger distance (a
factor of ∼1.5 larger, see Schutz 2011), increasing the rates
of coincident SGRB–GWs of about a factor of 3.4 (Schutz
2011);

6. We compare our SGRB rates with the rates of NS mergers
derived from population synthesis models or from the statis-
tics of Galactic binaries. This enables us to infer an average
opening angle of the population of SGRBs of 3◦–6◦ (assum-
ing that all SGRBs are produced by the NS–NS mergers),
which is consistent with the few bursts with θjet measured
from the break of their afterglow light curve.

Our SGRB rate estimates might seem to compromise the per-
spective of a joint GW–SGRB observation in the near future.
We note, however, that these rates refer to the prompt emis-
sion of SGRBs whose jets point towards the Earth. SGRBs not
pointing at us can still be seen as orphan afterglows (i.e. after-
glows without an associated prompt emission; see e.g. Ghirlanda
et al. 2015b; Rhoads 1997 for the population of long GRBs), es-
pecially if the afterglow emission is poorly collimated or even
isotropic (e.g. Ciolfi & Siegel 2015). The luminosity of the after-
glow correlates with the jet kinetic energy, which is thought to be
proportional to the prompt luminosity. Point 1 above shows that
the average luminosity in the prompt emission, as implied by our
result, is nearly two orders of magnitude higher than previous
findings. This enhances the chance of observing an orphan after-
glow in association with a GW event (e.g. Metzger et al. 2015).
Efforts should go in the direction of finding and identifying such
orphan afterglows as counterparts of GW events.
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