1,080 research outputs found
EVALUATING NOVEL RISK FACTOR ASSOCIATIONS FOR SUBCLINICAL CARDIOVASCULAR DISEASE
Globally, cardiovascular disease (CVD) is the leading cause of death. Increased risk for CVD can be attributed to smoking, high blood pressure, poor lipid profiles, obesity and psychosocial factors. Markers of subclinical CVD are non-invasive measures that detect early atherosclerotic changes. The purpose of this dissertation was to evaluate novel risk factor associations for subclinical CVD in three distinct populations. The protective effect of HDL-c for subclinical CVD was diminished in a population of postmenopausal women compared to premenopausal women. Furthermore, the concentration of small HDL particles was higher among postmenopausal women. Lipid profile changes with the menopausal transition may in part explain the increased risk of CVD seen after menopause.The protective effect of education for subclinical CVD was evident only among females from an Afro-Caribbean population. Educational differences in SBP and lipids varied for males and females providing insight into potential mechanisms for the education-subclinical CVD relationship observed on the island of Tobago.Tonic cardiac sympathetic activity and parasympathetic reactivity were independent predictors of subclinical CVD in a population of overweight and obese young adults. The effect of C-reactive protein (CRP) on subclinical CVD is potentially explained by the autonomic anti-inflammatory mechanisms linking heart rate variability and CRP. Identifying novel risk factor associations for subclinical CVD in various populations supports the important public health objective of reducing the global burden of CVD morbidity and mortality through early detection of atherosclerosis
The Changing Role of RSEs over the Lifetime of Parsl
This position paper describes the Parsl open source research software project
and its various phases over seven years. It defines four types of research
software engineers (RSEs) who have been important to the project in those
phases; we believe this is also applicable to other research software projects.Comment: 3 page
Bivalve facilitation mediates seagrass recovery from physical disturbance in a temperate estuary
Rapid global degradation of coastal habitats can be attributed to anthropogenic activities associated with coastal development, aquaculture, and recreational surface water use. Restoration of degraded habitats has proven challenging and costly, and there is a clear need to develop novel approaches that promote resilience to human-caused disturbances. Positive interactions between species can mitigate environmental stress and recent work suggests that incorporating positive interactions into restoration efforts may improve restoration outcomes. We hypothesized that the addition of a potential facultative mutualist, the native hard clam (Mercenaria mercenaria), could enhance seagrass bed recovery from disturbance. We conducted two experiments to examine the independent and interacting effects of hard clam addition and physical disturbance mimicking propeller scarring on mixed community Zostera marina and Halodule wrightii seagrass beds in North Carolina. Adding clams to seagrass beds exposed to experimental disturbance generally enhanced seagrass summer growth rates and autumn shoot densities. In contrast, clam addition to non-disturbed seagrass beds did not result in any increase in seagrass growth rates or shoot densities. Clam enhancement of autumn percent cover relative to areas without clam addition was most prominent after Hurricane Dorian, suggesting that clams may also enhance seagrass resilience to repeated disturbances. By June of the next growing season, disturbed areas with clam additions had greater percent cover of seagrass than disturbed areas without clam additions. Beds that were disturbed in April had higher percent cover than areas disturbed in June of the previous growing season. Our results suggest that the timing and occurrence of physical disturbances may modify the ability of clams to facilitate seagrass resiliency and productivity. Understanding when and how to utilize positive, interspecific interactions in coastal restoration is key for improving restoration success rates.ECU Open Access Publishing Support Fun
Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells
The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 µm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes
Improving efficiency of analysis jobs in CMS
Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs
Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes
Black women across the African diaspora experience more aggressive breast cancer with higher mortality rates than white women of European ancestry. Although inter-ethnic germline variation is known, differential somatic evolution has not been investigated in detail. Analysis of deep whole genomes of 97 breast cancers, with RNA-seq in a subset, from women in Nigeria in comparison with The Cancer Genome Atlas (n = 76) reveal a higher rate of genomic instability and increased intra-tumoral heterogeneity as well as a unique genomic subtype defined by early clonal GATA3 mutations with a 10.5-year younger age at diagnosis. We also find non-coding mutations in bona fide drivers (ZNF217 and SYPL1) and a previously unreported INDEL signature strongly associated with African ancestry proportion, underscoring the need to expand inclusion of diverse populations in biomedical research. Finally, we demonstrate that characterizing tumors for homologous recombination deficiency has significant clinical relevance in stratifying patients for potentially life-saving therapies
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
- …