423 research outputs found

    Match physical performance of elite female soccer players during international competition.

    Get PDF
    The purpose of the present study was to provide a detailed analysis of the physical demands of competitive international female soccer match-play. A total of 148 individual match observations were undertaken on 107 outfield players competing in competitive international matches during the 2011-2012 and 2012-2013 seasons, using a computerized tracking system (Prozone Sports Ltd., Leeds, England). Total distance (TD) and total high-speed running distances (THSR) were influenced by playing position, with central midfielders (CM) completing the highest (10985±706 m and 2882±500 m) and central defenders (CD) the lowest (9489±562 m and 1901±268 m) distances, respectively. Greater total very high-speed running (TVHSR) distances were completed when a team was without (399±143 m) compared to with (313±210 m) possession of the ball. The majority of sprints were over short distances with 76 % and 95 % being less than 5 m and 10 m, respectively. Between half reductions in physical performance were present for all variables, independent of playing position. The current study provides novel findings regarding the physical demands of different playing positions in competitive international female match-play and provides important insights for physical coaches preparing elite female players for competition

    Reduction in Physical Match Performance at the Start of the Second Half in Elite Soccer

    Get PDF
    Purpose: Soccer referees' physical match performances at the start of the second half (46-60 min) were evaluated in relation to both the corresponding phase of the first half (0-15 min) and players' performances during the same match periods. Methods: Match analysis data were collected (Prozone, UK) from 12 soccer referees on 152 English Premier League matches during the 2008/09 soccer season. Physical match performance categories for referees and players were total distance, high-speed running distance (speed >5.5 m/s), and sprinting distance (>7.0 m/s). The referees' heart rate was recorded from the start of their warm-up to the end of the match. The referees' average distances (in meters) from the ball and fouls were also calculated. Results: No substantial differences were observed in duration (16:42 ± 2:35 vs 16:27 ± 1:00 min) or intensity (107 ± 11 vs 106 ± 14 beats/ min) of the referees' preparation periods immediately before each half. Physical match performance was reduced during the initial phase of the second half when compared with the first half in both referees (effect sizes-standardized mean differences-0.19 to 0.73) and players (effect sizes 0.20 to 1.01). The degree of the decreased performance was consistent between referees and players for total distance (4.7 m), high-speed running (1.5 m), and sprinting (1.1 m). The referees were closer to the ball (effect size 0.52) during the opening phase the second half. Conclusion: Given the similarity in the referees' preparation periods, it may be that the reduced physical match performances observed in soccer referees during the opening stages of the second half are a consequence of a slower tempo of play

    Translating nanoEHS data using EPA NaKnowBase and the resource description framework [version 1; peer review: 2 approved]

    Get PDF
    Background The U.S. Federal Government has supported the generation of extensive amounts of nanomaterials and related nano Environmental Health and Safety (nanoEHS) data, there is a need to make these data available to stakeholders. With recent efforts, a need for improved interoperability, translation, and sustainability of Federal nanoEHS data in the United States has been realized. The NaKnowBase (NKB) is a relational database containing experimental results generated by the EPA Office of Research and Development (ORD) regarding the actions of engineered nanomaterials on environmental and biological systems. Through the interaction of the National Nanotechnology Initiative’s Nanotechnology Environmental Health Implications (NEHI) Working Group, and the Database and Informatics Interest Group (DIIG), a U.S. Federal nanoEHS Consortium has been formed. Methods The primary goal of this consortium is to establish a “common language” for nanoEHS data that aligns with FAIR data standards. A second goal is to overcome nomenclature issues inherent to nanomaterials data, ultimately allowing data sharing and interoperability across the diverse U.S. Federal nanoEHS data compendium, but also in keeping a level of consistency that will allow interoperability with U.S. and European partners. The most recent version of the EPA NaKnowBase (NKB) has been implemented for semantic integration. Computational code has been developed to use each NKB record as input, modify and filter table data, and subsequently output each modified record to a Research Description Framework (RDF). To improve the accuracy and efficiency of this process the EPA has created the OntoSearcher tool. This tool partially automates the ontology mapping process, thereby reducing onerous manual curation. Conclusions Here we describe the efforts of the US EPA in promoting FAIR data standards for Federal nanoEHS data through semantic integration, as well as in the development of NAMs (computational tools) to facilitate these improvements for nanoEHS data at the Federal partner level

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Revolutionary Self-Sustaining Pasture-Crop Rotation Systems Developed by Researcher-Farmer Collaboration for Southern Australian Farming Systems

    Get PDF
    Mixed farming pasture-crop rotation systems in southern Australia have traditionally relied on subterranean clover and annual medics. Concern over the long-term persistence of these species was raised in the 1980‟s with the cessation of manufacture of suction harvesters required for seed production. Subsequently, their adaptation has been tested due to climate change. More frequent droughts, particularly the millennium drought (2002-2009), increased incidence of false breaks and dry spring conditions causing decline or complete loss of seedbank reserves and failure of new sowings. A concerted effort developing new legume species for Australian farming systems, led by Western Australia, resulted in domestication of biserrula, bladder clover and gland clover and development of new cultivars of French and yellow serradella. These species/varieties possess characteristics including one or more of the following: higher hard seed content, deeper root systems, greater acid soil tolerance in symbiosis, increased herbage and seed production, wider tolerance to pest and diseases. They can also be harvested with conventional cereal harvesters reducing seed cost and enabling farmers to produce their own seed (Loi et al., 2005). A survey of farmers showed adoption of new species was limited by a lack of detailed management information on how to grow and manage them, to maximise their impact on crop and livestock productivity (Hackney et al., 2012). This paper reports on efforts made over a decade by a multidisciplinary WA and NSW team of plant breeders, rhizobiologists, agronomists and animal scientists, formed to develop new self-sustaining pasture-crop rotation systems to fill the void left by the failure of traditional rotation systems. The critical role and early recruitment of „champion‟ farmers in achieving the successful adoption of new technology is discussed, as is the difficulty in organizing and funding systems research

    Multi-group support vector machines with measurement costs:A biobjective approach

    Get PDF
    Support Vector Machine has shown to have good performance in many practical classification settings. In this paper we propose, for multi-group classification, a biobjective optimization model in which we consider not only the generalization ability (modeled through the margin maximization), but also costs associated with the features. This cost is not limited to an economical payment, but can also refer to risk, computational effort, space requirements, etc. We introduce a Biobjective Mixed Integer Problem, for which Pareto optimal solutions are obtained. Those Pareto optimal solutions correspond to different classification rules, among which the user would choose the one yielding the most appropriate compromise between the cost and the expected misclassification rate

    Clinical trial of laronidase in Hurler syndrome after hematopoietic cell transplantation.

    Get PDF
    BackgroundMucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH. The objective of this study was to evaluate the effects of laronidase on somatic outcomes of patients with MPS IH previously treated with HCT.MethodsThis 2-year open-label pilot study of laronidase included ten patients (age 5-13 years) who were at least 2 years post-HCT and donor engrafted. Outcomes were assessed semi-annually and compared to historic controls.ResultsThe two youngest participants had a statistically significant improvement in growth compared to controls. Development of persistent high-titer anti-drug antibodies (ADA) was associated with poorer 6-min walk test (6MWT) performance; when patients with high ADA titers were excluded, there was a significant improvement in the 6MWT in the remaining seven patients.ConclusionsLaronidase seemed to improve growth in participants <8 years old, and 6MWT performance in participants without ADA. Given the small number of patients treated in this pilot study, additional study is needed before definitive conclusions can be made

    Technical Performance Reduces during the Extra-Time Period of Professional Soccer Match-Play

    Get PDF
    Despite the importance of extra-time in determining progression in specific soccer tournament matches, few studies have profiled the demands of 120-minutes of soccer match-play. With a specific focus on the extra-time period, and using a within-match approach, we examined the influence of prolonged durations of professional soccer match-play on markers of technical (i.e., skilled) performance. In 18 matches involving professional European teams played between 2010 and 2014, this retrospective study quantified the technical actions observed during eight 15-minute epochs (E1: 00:00–14:59 min, E2: 15:00-29:59 min, E3: 30:00-44:59 min, E4: 45:00-59:59 min, E5: 60:00-74:59 min, E6: 75:00-89:59 min, E7: 90:00-104:59 min, E8: 105:00-119:59 min). Analysis of players who completed the demands of the full 120 min of match-play revealed that the cumulative number of successful passes observed during E8 (61±23) was lower than E1-4 (E1: 88±23, P=0.001; E2: 77±21, P=0.005; E3: 79±18, P=0.001; E4: 80±21, P=0.001) and E7 (73±20, P=0.002). Similarly, the total number of passes made in E8 (71±25) was reduced when compared to E1 (102±22, P=0.001), E3 (91±19, P=0.002), E4 (93±22, P≤0.0005) and E7 (84±20, P=0.001). The cumulative number of successful dribbles reduced in E8 (9±4) when compared to E1 (14±4, P=0.001) and E3 (12±4, P≤0.0005) and the total time the ball was in play was less in E8 (504±61 s) compared to E1 (598±70 s, P≤0.0005). These results demonstrate that match-specific factors reduced particular indices of technical performance in the second half of extra-time. Interventions that seek to maintain skilled performance throughout extra-time warrant further investigation

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial

    Get PDF
    Background Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. Methods We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5–36 months) were enrolled and randomly assigned (2:1) to receive 5 μg R21 plus 50 μg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. Findings From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71–79; p<0·0001) at the seasonal sites and 68% (61–74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71–78; p<0·0001) at the seasonal sites and 67% (59–73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762–974) cases per 1000 children-years at seasonal sites and 296 (231–362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5–17 month age group compared with 18–36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73–84]; p<0·001) and standard (75% [65–83]; p<0·001) sites. Interpretation R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. Funding The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy
    corecore