37 research outputs found

    Sesame eliciting and safe doses in a large sesame allergic population

    Get PDF
    Background: Sesame is a significant food allergen causing severe and even fatal reactions. Given its increasing prevalence in western diet, sesame is listed as an allergenic food requiring labeling in the United States and EU. However, data on the population reaction doses to sesame are limited. Methods: All sesame oral food challenges (OFCs), performed either for diagnosis or for threshold identification before the beginning of sesame oral immunotherapy (OIT) between November 2011 and July 2021 in Shamir medical center were analyzed for reaction threshold distribution. Safe-dose challenges with 90ā€“120 min intervals were also analyzed. Results: Two hundred and fifty patients underwent 338 positive OFCs, and additional 158 safe-dose OFCs were performed. The discrete and cumulative protein amounts estimated to elicit an objective reaction in 1% (ED01) of the entire cohort (n = 250) were 0.8 mg (range 0.3ā€“6.3) and 0.7 mg (range 0.1ā€“7.1), respectively, and those for 5% of the population (ED05) were 3.4 mg (range 1.2ā€“20.6) and 4.5 mg (range 1.2ā€“28.8), respectively. Safe-dose OFCs showed similar values of ED01 (0.8, 0.4ā€“7.5 mg) and ED05 (3.4, 1.2ā€“22.9 mg). While doses of ā‰¤1 mg sesame protein elicited oral pruritus in 11.6% of the patients, no objective reaction was documented to this amount in any of the challenges, including safe-dose OFCs. Conclusions: This study provides data on sesame reaction threshold distribution in the largest population of allergic patients studied, with no right or left censored data, and with validation using a safe-dose OFC. It further supports the current methods for ED determination as appropriate for establishing safety precautions for the food industry

    Updated full range of Eliciting Dose values for Cowā€™s milk for use in food allergen risk assessment

    Get PDF
    Access to Eliciting Doses (ED) for allergens enables advanced food allergen risk assessment. Previously, the full ED range for 14 allergenic foods, including milk, and recommendations for their use were provided (Houben et al., 2020). Additional food challenge studies with cowā€™s milk-allergic patients added 247 data points to the original dataset. Using the Stacked Model Averaging statistical method for interval-censored data on the 697 individual NOAELs and LOAELs for milk generated an updated full ED distribution. The ED01 and ED05, the doses at which 1% and 5% of the milk-allergic population would be predicted to experience any objective allergic reaction, were 0.3 and 3.2 mg milk protein for the discrete and 0.4 mg and 4.3 mg milk protein for the cumulative dose distribution, respectively. These values are slightly higher but remain within the 95% confidence interval of previously published EDs. We recommend using the updated EDs for future characterization of risks of exposure of milk-allergic individuals to milk protein. This paper contributes to the discussion on the Reference Dose for milk in the recent Ad hoc Joint FAO/WHO Expert Consultation on Risk Assessment of Food Allergens. It will also benefit harmonization of food allergen risk assessment and risk management globally

    Assessing the safety of cosmetic chemicals: Consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC (Threshold of Toxicological Concern)

    Get PDF
    AbstractThreshold of Toxicological Concern (TTC) aids assessment of human health risks from exposure to low levels of chemicals when toxicity data are limited. The objective here was to explore the potential refinement of exposure for applying the oral TTC to chemicals found in cosmetic products, for which there are limited dermal absorption data. A decision tree was constructed to estimate the dermally absorbed amount of chemical, based on typical skin exposure scenarios. Dermal absorption was calculated using an established predictive algorithm to derive the maximum skin flux adjusted to the actual ā€˜doseā€™ applied. The predicted systemic availability (assuming no local metabolism), can then be ranked against the oral TTC for the relevant structural class. The predictive approach has been evaluated by deriving the experimental/prediction ratio for systemic availability for 22 cosmetic chemical exposure scenarios. These emphasise that estimation of skin penetration may be challenging for penetration enhancing formulations, short application times with incomplete rinse-off, or significant metabolism. While there were a few exceptions, the experiment-to-prediction ratios mostly fell within a factor of 10 of the ideal value of 1. It can be concluded therefore, that the approach is fit-for-purpose when used as a screening and prioritisation tool

    Updated threshold dose-distribution data for sesame

    Get PDF
    Sesame is classified as a ā€œmajorā€ food allergen for which mandatory disclosure is required. Understanding reaction thresholds and how these vary within the allergic population is crucial in providing appropriate dietary advice to patients, providing guidance to the food industry, and informing dosing regimens for oral food challenges (FC). However, the largest data series used to derive a threshold dose-distribution for sesame included blinded challenge data from just 40 individuals.1 Data from low-dose, open FC can be used to supplement that from blinded FC, reducing uncertainty in estimating threshold dose-distributions for allergenic foods which otherwise lack sufficient data.2 We, therefore, undertook a systematic search of the literature and performed dose-distribution modelling of individual patient FC data (including open FC) to update estimated eliciting doses for sesame

    Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not?

    Get PDF
    Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARĪ± pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4Ī± signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health

    RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences

    Get PDF
    Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3ā€² untranslated region (3ā€² UTR). Partially complementary sequences within the 3ā€² UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses

    Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach

    Get PDF
    Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the 'human embryonic stem cell (hESC)- derived novel alternative test systems (ESNATS)' European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (\20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large 'common response' to VPA and MeHg could be distinguished from 'compound-specific' responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.EU/FP7/ESNATSDFGDoerenkamp-Zbinden Foundatio

    Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron

    Get PDF
    RNA interference (RNAi) is a powerful approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication. However, HIV-1 can escape from RNAi-mediated antiviral therapy by selection of mutations in the targeted sequence. To prevent viral escape, multiple small interfering RNAs (siRNAs) against conserved viral sequences should be combined. Ideally, these RNA inhibitors should be expressed simultaneously from a single transgene transcript. In this study, we tested a multiplex microRNA (miRNA) expression strategy by inserting multiple effective anti-HIV siRNA sequences in the miRNA polycistron mir-17-92. Individual anti-HIV miRNAs that resemble the natural miRNA structures were optimized by varying the siRNA position in the hairpin stem to obtain maximal effectiveness against luciferase reporters and HIV-1. We show that an antiviral miRNA construct can have a greater intrinsic inhibitory activity than a conventional short hairpin (shRNA) construct. When combined in a polycistron setting, the silencing activity of an individual miRNA is strongly boosted. We demonstrate that HIV-1 replication can be efficiently inhibited by simultaneous expression of four antiviral siRNAs from the polycistronic miRNA transcript. These combined results indicate that a multiplex miRNA strategy may be a promising therapeutic approach to attack escape-prone viral pathogens
    corecore