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Abstract Developmental neurotoxicity (DNT) and many

forms of reproductive toxicity (RT) often manifest them-

selves in functional deficits that are not necessarily based

on cell death, but rather on minor changes relating to cell

differentiation or communication. The fields of DNT/RT

would greatly benefit from in vitro tests that allow the

identification of toxicant-induced changes of the cellular

proteostasis, or of its underlying transcriptome network.

Therefore, the ‘human embryonic stem cell (hESC)-

derived novel alternative test systems (ESNATS)’ Euro-

pean commission research project established RT tests

based on defined differentiation protocols of hESC and

their progeny. Valproic acid (VPA) and methylmercury

(MeHg) were used as positive control compounds to
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address the following fundamental questions: (1) Does

transcriptome analysis allow discrimination of the two

compounds? (2) How does analysis of enriched transcrip-

tion factor binding sites (TFBS) and of individual probe

sets (PS) distinguish between test systems? (3) Can batch

effects be controlled? (4) How many DNA microarrays are

needed? (5) Is the highest non-cytotoxic concentration

optimal and relevant for the study of transcriptome chan-

ges? VPA triggered vast transcriptional changes, whereas

MeHg altered fewer transcripts. To attenuate batch effects,

analysis has been focused on the 500 PS with highest

variability. The test systems differed significantly in their

responses (\20 % overlap). Moreover, within one test

system, little overlap between the PS changed by the two

compounds has been observed. However, using TFBS

enrichment, a relatively large ‘common response’ to VPA

and MeHg could be distinguished from ‘compound-spe-

cific’ responses. In conclusion, the ESNATS assay battery

allows classification of human DNT/RT toxicants on the

basis of their transcriptome profiles.

Keywords Methylmercury � Valproic acid �
Transcription factor � Reproductive toxicity �
Alternative testing strategies

Abbreviations

PS Probe sets

DMA DNA microarray

BMC Benchmark concentration

TFBS Transcription factor binding site

GO Gene ontology

Introduction

Reproductive toxicity (RT) testing is one of the technically

most challenging fields of toxicology, and there is a huge

demand for more cost-effective, faster, and more accurate

assays. RT may be caused by chemicals, drugs, pesticides

and other compounds that interfere with biological pro-

cesses essential for reproduction, and it is therefore of large

societal concern. It has been estimated that up to 50 % of

the animals used for testing in the context of REACH will

be required to evaluate RT (Seiler et al. 2011). Currently,

this type of safety assessment comprises evaluation of

chemical effects on spermatogenesis, oogenesis or the

fertilization process. Another large subfield deals with the

disturbances of embryo–foetal development and is gener-

ally called developmental toxicity (DT) testing.

In the area of RT testing, evaluation of a single com-

pound requires hundreds of animals. If testing of nervous

system development and long-term effects are included,

even thousands of rats/rabbits are required. Animal testing,

for example, following OECD test guidelines 414 (2-gen-

eration reproduction), 426 (developmental neurotoxicity

(DNT)) or others, often only gives indirect indications of

toxicity such as changed numbers of embryo–foetal death,

altered foetal weight or the development of anatomical or

behavioural abnormalities. To significantly reduce the use

of animals and to get further mechanistic insights, in vitro

systems modelling critical parts of the foetal development

are being explored as alternatives (Adler et al. 2011;

Basketter et al. 2012); for instance, the development of

initial germ layers from pluripotent cells, and the specifi-

cation of organ systems such as the central nervous system

(CNS) are such critical parts of the development.

The CNS is considered to be one of the most frequent

targets of systemic toxicity, with the developing nervous

system being particularly susceptible (Klaassen 2010; van

Thriel et al. 2012). This susceptibility to DNT is due to a

finely orchestrated sequence of complex biological pro-

cesses, such as proliferation, migration, apoptosis, differ-

entiation, patterning, neurite outgrowth, synaptogenesis,

myelination and neurotransmitter synthesis, which are all

targets of numerous toxic chemicals (Kadereit et al. 2012).

Despite its high relevance, DNT is one of the least studied

forms of toxicity (Kadereit et al. 2012; Makris et al. 2009).

It is also particularly difficult to study, because DNT is not

necessarily caused by cell death. In fact, chemically

induced changes in the proportions of neural cells, posi-

tioning or connectivity may be sufficient to cause DNT

(Kadereit et al. 2012; Kuegler et al. 2010). Currently, DNT

is tested according to OECD TG 426, which requires ani-

mals to be exposed during gestation and lactation, and the

resulting offspring to be analysed for gross neurologic and

behavioural abnormalities. However, this complex in vivo

test system is too laborious and expensive to allow all the

testing needed to provide hazard information for thousands

of untested chemicals.

To bridge this gap, embryonic stem cell (ESC)-based

systems are currently being developed (Kuegler et al. 2012;

Leist et al. 2008a; Weng et al. 2012; Zimmer et al. 2012).

These systems recapitulate early neuronal development

in vitro, including neurulation, patterning, neurogenesis

and gliogenesis. In the present study, five human ESC

(hESC)-based in vitro systems, named here after the

developing institutions, have been employed. They reca-

pitulate different phases of early tissue specification and

neural development (Fig. 1). UKK recapitulates the multi-

lineage differentiation of hESC into ecto-, meso- and

endoderm (Jagtap et al. 2011; Meganathan et al. 2012).

UKN1 models the stage of neuroectodermal induction that

results in the formation of neural ectodermal progenitor

cells (NEP) (Balmer et al. 2012; Chambers et al. 2009).
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JRC reproduces the neural tube formation during early

neurogenesis by the formation of neural rosettes (Stum-

mann et al. 2009). UNIGE models the transition from

neural precursor cells to mature neurons, showing mor-

phological signs of neural differentiation, including neurite

extensions. UKN4 already starts with neuronally commit-

ted precursor cells that undergo the maturation towards

post-mitotic neurons with neurites. These cells were not

derived from hESC but from a human foetal brain (Scholz

et al. 2011; Stiegler et al. 2011).

Differentiating murine ESCs show similar waves of

gene expression changes as observed during murine

embryonic development in vivo (Barberi et al. 2003;

Gaspar et al. 2012; Kadereit et al. 2012; Zimmer et al.
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Fig. 1 Overview over the test

systems’ treatment protocols

used for microarray analysis.

The five test systems cover

different periods and processes

relevant to early embryonic/

neuronal development, as

indicated to the left. The time
arrows indicate when cells were

re-plated, medium was

exchanged, toxicants were

added and when analysis was

performed. Additional

information is presented below

each test system on the type of

coating and the medium used in

different experimental phases
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2011a, b). Such information is not available for early

human development, but it is generally assumed by anal-

ogy that hESC would reproduce normal human tissue dif-

ferentiation (Leist et al. 2008a). Under this condition,

transcriptome analysis, including bioinformatic processing

of the data, appears as an attractive method to detect per-

turbations caused by chemicals in the normal wave-like

expression patterns in hESC differentiation systems.

Moreover, alterations in the proportions of cell types, as a

consequence of exposure to test compounds, should be

detectable by DNA microarrays (DMA), as shown earlier

for other systems (Schmidt et al. 2008, 2012). The treat-

ment period for each test system was chosen according to

previously described effects (Fig. 1). For example, in

UKN4, neurite outgrowth starts on day of differentiation

(DoD) 2 and can be measured at DoD3 (Stiegler et al.

2011). Therefore, DMA analysis was also performed here

under similar incubation conditions. In the same vein, it is

known for UKN1 that changes in gene expression are best

detectable after treatment from DoD 0 to 6 (Balmer et al.

2012) and accordingly transcriptome analysis was done on

DoD6 after 6 days of incubation with test compound.

For test system evaluation, we have chosen valproic acid

(VPA) and methylmercury (MeHg), two model compounds

that trigger RT and DNT in humans and animals (Chen

et al. 2007; Grandjean and Landrigan 2006; Kadereit et al.

2012; Wang et al. 2011). The ability of VPA to cause DNT

has been recognized since the 1970s. VPA is a clinically

used anti-epileptic drug that acts as a reversible modifier of

enzyme activities. It has also been shown to cause neural

tube defects and to trigger large changes of the cellular

transcriptome through the inhibition of histone deacety-

lases (Jergil et al. 2009; Theunissen et al. 2012a; Werler

et al. 2011). MeHg also causes neural tube defects

(Grandjean and Herz 2011; Robinson et al. 2011). How-

ever, the transcriptional changes due to MeHg are more

limited and indirect, as it acts through the unspecific

modification of many different proteins, in addition to

triggering oxidative stress (Aschner et al. 2007). Despite its

unclear mode of action, MeHg is a ‘gold standard’, because

human DNT has been particularly well documented,

mainly due to the catastrophic endemics caused by MeHg-

contaminated food (Bakir et al. 1973; Choi 1989; Davidson

et al. 2004; Ekino et al. 2007; Harada 1995).

The widespread use of transcriptomics endpoints

requires clarification of important technical issues. There-

fore, we addressed here the following questions: (1) Does

DMA analysis allow differentiation between distinct clas-

ses of toxicants and non-toxicants. If yes, (2) how large is

the overlap between the available ESC based test systems

(Fig. 1), and are they all required for the identification of

DNT compounds? (3) How many independent experiments

are needed? (4) At which optimal concentrations should

gene array analyses be performed? The present study

provides unequivocal answers to these questions and will

therefore serve as a basis for further development of RT

assays on the basis of DMA classification algorithms.

Materials and Methods

Chemicals

Valproic acid (VPA), mannitol and methylmercury chlo-

ride (MeHg) were obtained from Sigma. Stocks of VPA

and mannitol were prepared in water. MeHg was initially

dissolved in 10 % ethanol. A concentration of 10 mM

MeHg in this solvent was used as a master stock. For

experiments, the MeHg solution was pre-diluted 1:1000 in

water (final solvent concentration 0.1 %) and used as the

stock for further dilution with medium. The highest test

solvent concentration used in this study (at 1.5 lM MeHg)

was 0.0015 % ethanol.

Cell culture maintenance and experimental set-up

UKK

NIH-registered H9 human embryonic stem cells (WA09,

WiCell Research Institute, Madison, WI, USA) were cul-

tured in DMEM-F12, 20 % KO serum replacement, 1 %

non-essential amino acids, penicillin (100 units/ml),

streptomycin (100 lg/ml) and 0.1 mM b-mercaptoethanol

supplemented with 4 ng/ml human recombinant basic

fibroblast growth factor (bFGF) at 37 �C and 5 % CO2. The

undifferentiated stem cells (hESCs) were routinely pas-

saged with mechanical dissociation on irradiated mouse

embryonic fibroblasts (MEF). Prior to differentiation, the

cells were maintained for 5 days in 60-mm tissue culture

plates (Nunc, Langenselbold, Germany) coated with a

hESC-qualified matrix (BD Biosciences, California, USA)

in TESR1 medium (Stem Cell Technologies, mTESR1

basal medium ? mTESR1 59 supplement). For multilin-

eage differentiation, embryoid bodies (EBs) were prepared

as described previously (Jagtap et al. 2011) with minor

changes (60–70 clumps were added and bacteriological

plates were not coated with pluronic), and the EBs were

maintained for 14 days on a horizontal shaker with or

without drug treatment. Toxicant exposure was performed

as indicated in Fig. 1.

UKN1

H9 hESCs (as for UKK) were differentiated by dual SMAD

inhibition as described earlier in detail (Balmer et al. 2012;

Chambers et al. 2009; Weng et al. 2012). Briefly, hESCs
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were plated as single cells at a density of 18,000 cells/cm2

in medium previously conditioned for 24 h with mitomycin

C-inactivated mouse embryonic fibroblasts, containing

10 lM ROCK inhibitor Y-27632 and 10 ng/ml bFGF.

Medium was changed daily to conditioned medium con-

taining 10 ng/ml bFGF for 2 days. Differentiation was

initiated 3 days after re-plating on day of differentiation

(DoD) 0 by changing the medium to knockout serum

replacement medium (KSR) (Knockout DMEM with 15 %

knockout serum replacement, 2 mM Glutamax, 0.1 mM

MEM non-essential amino acids and 50 lM beta-mercap-

toethanol) supplemented with 35 ng/ml noggin, 600 nM

dorsomorphin and 10 lM SB-431642. From DoD4

onwards, KSR was replaced stepwise with N2 medium

(DMEM/F12 medium, 1 % Glutamax, 1.55 mg/ml glu-

cose, 0.1 mg/ml apotransferrin, 25 lg/ml insulin, 100 lM

putrescine, 30 nM selenium and 20 nM progesterone),

starting with 25 % N2 medium at DoD4. To assess the

chemical effects on RNA expression, the cells were dif-

ferentiated in the presence or absence of the chemicals

from DoD 0 for 6 days.

JRC

NIH-registered H9 hESCs (WiCell, USA) were cultured

undifferentiated in 60-mm cell culture dishes (TPP, Swit-

zerland) at 37 �C and 5 % CO2 on a layer of mitomycin

C-inactivated primary mouse embryonic fibroblasts (pMEF,

CF-1 strain Millipore USA), which were plated at a density

of 15000 cells/cm2, on gelatine-coated dishes in the pres-

ence of the standard maintenance medium for undifferen-

tiated hESCs [DMEM/F12 supplemented with 20 % KO

serum replacement, 1 % non-essential amino acids, 2 mM

glutamine, 0.1 mM b-mercaptoethanol and 4 ng/ml human

recombinant bFGF (all from Invitrogen, USA)]. Cells were

expanded weekly by microdissection and further propa-

gated on a feeder layer. For the differentiation towards early

neuroepithelial precursors, a published protocol was mod-

ified (Stummann et al. 2009). Briefly, intact 6-day-old H9

hESC colonies were detached by 1 mg/ml collagenase

(Invitrogen, USA) treatment and left in suspension culture

dishes for 3 days in hESC maintenance medium without

bFGF to allow the generation of EBs. After this time, EBs

were transferred onto single wells (one EB per well) of

96-well plates coated with 10 lg/ml laminin [in water

(Sigma, USA)] containing neural induction medium

[DMEM/F12 supplemented with 1 % non-essential amino

acids, 1 % N2 supplement, 2 lg/ml heparin (Sigma, USA)

and 20 ng/ml bFGF (unless stated, all from Invitrogen,

USA)]. Cultures were kept for up to 10 days with medium

changes every third day. The attached EBs were observed

daily and by day 10 they formed neural tube–like structures

known as neural rosettes.

UNIGE

For neural differentiation, an aliquot of H9 cells (WA09,

WiCell Research Institute, Madison, WI, USA) was thawed

and cultured in suspension in T75 flasks with N2B27 medium

(Life Technologies). From day 2 to 7, cells were incubated in

N2B27 medium supplemented with 10 lM anti TGF-beta

(Ascent) and 2 lM dorsomorphin (Tocris Bioscience). From

day 8 to 32, medium replacement was performed with N2B27

medium only. On day 33, generated spheres were dissociated

as single cells and cultured in N2B27 medium in poly orni-

thine (PLO) and laminin-coated 6-well plates. On day 36,

cells were detached and frozen in N2B27 medium in different

aliquots. To test neurotoxicity of chemical compounds, an

aliquot was thawed in PLO and laminin-coated 6-well plates.

Cells were cultured in a neuronal differentiation medium (ND

medium) made of NB medium, B-27 supplement, 2 mM

L-Glutamine and penicillin/streptomycin (Life Technologies)

as well as 10 ng/ml BDNF, 10 ng/ml recombinant human

glial cell-derived neurotrophic factor (GDNF) (Chemie

Brunschwig) and 10 lM ROCK inhibitor (Ascent). After

1 day of recovery, cells were incubated with the neurotoxi-

cant in ND medium without ROCK inhibitor for 2 days and

then material was collected for analysis.

UKN4

Lund human mesencephalic cells (LUHMES) were cultured

exactly as described earlier (Scholz et al. 2011; Stiegler et al.

2011). Briefly, cells were maintained in advanced DMEM-F12,

1x ‘N2 supplement’, 2 mM L-glutamine and 40 ng/ml bFGF at

37 �C in a humidified 95 % air/5 % CO2 atmosphere on Nun-

clonTM plastic cell culture flasks, coated with 50 ng/ml PLO and

1 lg/ml fibronectin. Proliferating cells were enzymatically dis-

sociated with trypsin (138 mM NaCl, 5.4 mM KCl, 6.9 mM

NaHCO3, 5.6 mM D-Glucose, 0.54 mM EDTA, 0.5 g/l trypsin

from bovine pancreas type-II-S) and passaged every other day.

For differentiation, 8 9 106 LUHMES were seeded into a

T175 flask in proliferation medium and differentiation was

started after 24 h on day 0 (d0), by changing to advanced

DMEM-F12, 19 ‘N2 supplement’, 2 mM L-glutamine, 1 mM

dibutyryl 30,50-cyclic adenosine monophosphate (cAMP),

1 lg/ml tetracycline and 2 ng/ml GDNF. After 2 days of cul-

tivation in culture flasks, cells were trypsinized and seeded onto

PLO/fibronectin-precoated 96-well plates at a cell density of 30

000/well in advanced DMEM-F12, 19 ‘N2 supplement’,

2 mM L-glutamine, 1 lg/ml tetracycline. One hour after re-

plating, cells were exposed to toxicants for 24 h.

Affymetrix gene chip analysis

Analysis was performed as described earlier (Balmer et al.

2012; Jagtap et al. 2011). Briefly, samples from approximately
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5 9 106 cells were collected using RNAprotect reagent from

Qiagen. The RNA was quantified using a NanoDrop N-1000

spectrophotometer (NanoDrop, Wilmington, DE, USA), and

the integrity of RNA was confirmed with a standard sense

automated gel electrophoresis system (Experion, Bio-Rad,

Hercules, CA, USA). The samples were used for transcrip-

tional profiling when the RNA quality indicator (RQI) number

was[8. First-strand cDNA was synthesised from 100 ng total

RNA using an oligo-dT primer with an attached T7 promoter

sequence, followed by the complementary second strand. The

double-stranded cDNA molecule was used for in vitro tran-

scription (IVT, standard Affymetrix procedure) using Gene-

chip 30 IVT Express Kit. During synthesis of the aRNA

(amplified RNA, also commonly referred to as cRNA), a

biotinylated nucleotide analogue was incorporated, which

serves as a label for the message. After amplification, aRNA

was purified with magnetic beads and 15 lg of aRNA was

fragmented with fragmentation buffer as per the manufac-

turer’s instructions. Then, 12.5 lg fragmented aRNA was

hybridised with Affymetrix Human Genome U133 plus 2.0

arrays as per the manufacturer’s instructions. The chips were

placed in a GeneChip Hybridization Oven-645 for 16 h at

60 rpm and 45 �C. For staining and washing, Affymetrix HWS

kits were used on a Genechip Fluidics Station-450. For scan-

ning, the Affymetrix Gene-Chip Scanner-3000-7G was used,

and the image and quality control assessments were performed

with Affymetrix GCOS software. All reagents and instruments

were acquired from Affymetrix (Affymetrix, Santa Clara, CA,

USA).The generated CEL files were used for further statistical

analysis. The authors declare that microarray data were pro-

duced according to MIAME guidelines and will be deposited in

ArrayExpress upon acceptance of the manuscript.

Cytotoxicity testing

In order to determine the cytotoxic range of the chemicals to

be tested with the DMA, a resazurin assay was performed in all

test systems. The assay is based on the capability of viable and

healthy cells to reduce resazurin to resorufin, which can be

measured by a colorimetric or fluorimetric shift as described

earlier (Stiegler et al. 2011; Stummann et al. 2009). Exposure

time to chemicals and day of analyses for this endpoint was the

same as for the experimental set-up of the RNA sampling

(Fig. 1). Chemicals were tested at several concentrations.

Each condition was run in technical triplicates in at least three

independent biological experiments. On the day of analysis,

cells were incubated with 10 lg/ml resazurin for 30 min to

1 h at 37 �C and 5 % CO2. To determine the background

fluorescence of resazurin itself, a control with only resazurin

in medium was included. Resorufin was measured at a

wavelength of 560E9/590Em with a fluorescence reader. The

mean background fluorescence of resazurin was subtracted

from all experimental data. Further data processing to identify

the lowest non-cytotoxic ‘benchmark concentration’ (BMC)

of the chemicals was done as follows: data from each exper-

iment were normalised to their respective untreated controls

(set as 100 %). The data were then displayed in semiloga-

rithmic plots. Data points were connected by a nonlinear

regression sigmoidal dose–response curve fit. These curves

were averaged, and the average curve was plotted. The BMC

was then determined graphically as the data point on the

average curve corresponding to the 90 % viability value, or as

the last real data point left of this value. The BMC was used as

test concentration for DMA analysis. The ‘lower test con-

centration’ (LOW) was determined by dividing the BMC by a

factor of four.

In vitro–in vivo extrapolation

In vitro–in vivo extrapolation (IVIVE) of toxicity data can be

achieved using physiologically based pharmacokinetic

(PBPK) modelling (Carrier et al. 2001; Forsby and Blaauboer

2007; Louisse et al. 2010; Rotroff et al. 2010; Verwei et al.

2006; Wetmore et al. 2012).The extrapolation is based on the

implicit assumption that equal concentrations at the target site

in vitro and in vivo lead to equal effects. In this project, in vitro

nominal concentrations equivalent to relevant toxic concen-

trations in vivo were determined in two steps. (1) PBPK

modelling was used to simulate systemic concentrations cor-

responding to the lowest dose level at which neurodevelop-

mental effects were observed in rats. The acslX software was

used for the simulations (v3.0.1.6; Aegis Technologies,

Huntsville AL, USA). (2) The unbound fraction may differ

between in vitro and in vivo systems due to differences in

albumin concentrations and lipid fractions between plasma or

extracellular fluid and test medium. The nominal in vitro

concentration Cvitro equivalent to the maximum systemic

concentration in vivo Cpl was derived by correcting for these

differences by:

Cvitro ¼ Cpl �
�

1� fb;pl

� �

� 1þ Kow � VFL;vitro

1þ Kow � VFL;pl

þ fb;pl �
Pvitro

Ppl

�

where fb,pl is the plasma bound fraction, VFL,pl and

VFL,vitro are the volume fractions of lipids in plasma and

in vitro, Ppl and Pvitro are the concentrations of albumin in

plasma and in vitro (Gulden and Seibert 2003). Supple-

mentary figure S6B shows the lipid content and albumin

concentrations in the test systems and in rat plasma.

IVIVE of MeHg data

The kinetics of MeHg in rats was previously described

using a detailed PBPK model by Carrier et al. (2001). This
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PBPK model was used in the current project to predict

systemic concentrations of MeHg after exposure to dosages

known to result in relevant toxic effects in vivo. A com-

prehensive review of neurodevelopmental toxicity of

MeHg in laboratory animals was published by Castoldi

et al. (2008). The lowest maternal exposures in rat leading

to behavioural and neurophysiological effects in the off-

spring were between 0.01 and 0.05 mg/kg/day from ges-

tation day 6 to 9 (Bornhausen et al. 1980). MeHg

extensively binds to intra- and extracellular proteins by the

formation of cysteine complexes. The MeHg–cysteine

complexes readily pass placental and blood–brain barriers

by facilitated transport (Gray 1995). Maternal and foetal

blood concentrations were found to be similar (Gray

1995).The total blood concentration was therefore assumed

to be available for foetal brain exposure and equated to the

nominal concentration in vitro.

IVIVE of VPA data

A PBPK model for VPA was developed and calibrated

according to data of Binkerd et al. (1988) and Kobayashi

et al. (1991). Model equations and parameterization are

given in the supplemental material (Fig. S6). This model

was used to predict systemic VPA concentrations corre-

sponding to the lowest dose at which neurodevelopmental

effects were observed in rats in vivo. A single intraperi-

toneal dose of VPA in rat dams of 350 mg/kg was found by

Rodier et al. (1996) to cause behavioural and neuromor-

phological effects in the offspring. Oral and intraperitoneal

doses lead to comparable plasma kinetics (Ingram et al.

2000). VPA is known to pass the placental barrier in sev-

eral species; therefore, comparable VPA concentrations were

assumed in maternal and cord plasma. The unbound concen-

tration in plasma was equated to the unbound test medium

concentrations. For the correction of binding, a bound fraction

in plasma of 63 % was used (Loscher 1978).

Statistical analysis of gene array data

The following analyses were performed using the statistical

programming language ‘R-version 2.15.1’ For the nor-

malisation of the entire set of 190 Affymetrix gene

expression arrays, the Robust Multi-array Average (RMA)

algorithm (Irizarry et al. 2003) was used that applies

background correction, log2 transformation, quantile nor-

malisation and a linear model fit to the normalised data to

obtain a value for each probe set (PS) on each array. To

avoid having to re-normalise future-generated data for

comparison with the current data, we used the R package

RefPlus (Harbron et al. 2007) that allows the user to per-

form extrapolation strategies by remembering the normal-

isation parameters. After normalisation, gene expression

for each gene at each concentration was adjusted by

comparing the expression to the corresponding control

array expression, that is, the difference between gene

expressions at each concentration compared to the control

was calculated (paired design).

Differential expression was calculated using the R

package limma (Smyth et al. 2005). Here, the combined

information of the complete set of genes is used by an

empirical Bayes adjustment of the variance estimates of

single genes. This form of a moderated t test is abbreviated

here as ‘Limma t test’. The resulting p values were mul-

tiplicity-adjusted to control the false discovery rate (FDR)

by the Benjamini–Yekutieli procedure. As a result, for each

combination of centre (=test system), compound and con-

centration, a gene list was obtained, with corresponding

estimates for log fold change and p values of the Limma

t test (unadjusted and FDR-adjusted).

Data display algorithms

General test quality control was as described (Leist et al.

2010). Heatmaps were used to visualise matrices of gene

expression values. Colour encodes the magnitude of the

values, ranging from yellow (low) to red (high). Volcano

plots were used to visualise genome-wide differential

expression. Gene wise fold-change values (log2 scale) are

plotted against (unadjusted or FDR-adjusted Limma t test)

significance values (negative log10 scale) on the x-axis and

y-axis, respectively. Principal component analysis (PCA)

plots were used to visualise expression data in two

dimensions, representing the first two principal compo-

nents, that is, the two orthogonal directions of the data with

highest variance. The percentages of the variances covered

are indicated in the figures. The software ‘R - version

2.15.1’ was used for all calculations and display of PCA

and heatmaps (R_Development_Core_Team 2011). The

calculation and display of toxicity curves was done using

GraphPad Prism 5.0 (Graphpad Software, La Jolla, USA).

The Venn diagrams for the comparison of gene expression,

gene ontology (GO) terms and transcription factor binding

sites (TFBS) between test systems were constructed

according to Chow and Rodgers (2005). The size of circles

and areas was chosen proportional to the number of ele-

ments included.

Transcription factor binding site enrichment (TFBSE)

was performed using the PRIMA algorithm (Elkon et al.

2003; http://acgt.cs.tau.ac.il/prima/) provided in the

Expander software suite (version 6.04, (Ulitsky et al.

2010); http://acgt.cs.tau.ac.il/expander/). Lists of signifi-

cant differentially expressed genes with adjusted p value

\0.05 were converted to Entrez IDs (R package hgu133-

plus2.db) and duplicates were removed. The PRIMA

algorithm was run with a p value threshold set to 0.05, no
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multiple testing correction, a background set of all human

genes (provided in the Expander software suite), and using

the TRANSFAC database (8.2) as the data source for

transcription factor binding sites. The PRIMA algorithm

analyses 267 separate TRANSFAC entries. PRIMA results

are presented in tables with TF identifiers provided by

PRIMA and their full names, or the overlap between TF

enrichments for different treatments is shown as Venn

diagrams or as tables [Cytoscape; (Shannon et al. 2003;

Smoot et al. 2011); http://www.cytoscape.org].

For the word clouds of the overrepresented GO groups, a

g:Profiler query (Reimand et al. 2007) was initially made,

and only results from the biological process and pathway

branches were retained. These were viewed as a subgraph

of the whole GO tree. All categories were deleted that were

larger than 1,000 genes and smaller than 50 genes. Then,

connected components from the remaining graph were

identified, and from each of these, the category with the

highest p value was selected. These were ordered by

p value and the top 40 are displayed. When displaying the

categories, the font sizes were first scaled to be propor-

tional to the log10 of enrichment p value. To enable global

comparison, the grey shade of the letters was scaled the

same way over all plotting windows.

To assess the sensitivity of differential expression

analysis with respect to the number of DMA (=experi-

mental replicates), the following approach was used: For

each condition, we identified the differentially expressed

genes based on five pairs of DMA (control vs treated),

which was then used as the reference list. Significant PS

were identified in all cases by Limma t test, with a p \ 0.05

as significance threshold. The Benjamini–Hochberg and

the Benjamini–Yekutieli were used for the FDR correction

in different experiments as appropriate and as specified in

the figure legends. All possible permutations of 2, 3 or 4

DMA were calculated, and the differentially expressed PS

of all these conditions were identified (using the same

method as for the reference calculation). Finally, the

overlap between the new gene lists and the reference was

calculated, to determine the quantity of the reference that

could be recovered with less DMA.

Results and discussion

Detection of different transcriptional responses

to the DNT model compounds, valproic acid

and methylmercury

To explore the dynamics and specificity of the transcrip-

tional response of novel hESC-based in vitro systems

(Fig. 1), we chose VPA and MeHg as two positive control

toxicants with described effects on DNT and D-mannitol as

the negative control compound. The three test compounds

were initially evaluated in three of the test systems (UKK,

UKN1 and JRC) at the ‘maximum tolerated concentration’.

This benchmark concentration (BMC) was determined

experimentally for each of the test systems as the highest

concentration that reduced overall cell viability by not

more than 10 % (Fig. S1). In the case of mannitol, a large

range of concentrations, from 1 lM to 100 mM, was used

and no cytotoxicity was detected (data not shown). For the

UKN1 system, the response to mannitol was tested by

quantitative PCR for three toxicant-responsive genes

(OCT4, Pax6 and OTX2) (data not shown). As no changes

were observed for concentrations up to 40 mM, and data

on this compound were provided by the other test sys-

tems, DMSO (28 lM) was chosen as the DMA-negative

control for UKN1. The transcriptional alterations trig-

gered by the BMC of the two toxicants (VPA/MeHg) or

by the two negative controls (mannitol/DMSO) were

measured in 4–5 independent experiments on Affymetrix

DMA, and the genes that were differentially expressed

between culture medium-only controls and test com-

pounds were determined by modern stringent statistical

methods (Limma t test, Benjamini–Yekutieli FDR correc-

tion). The complete set of data is displayed in supplementary

Table S1.

For a visual monitoring of the different compound

effects, the hundred most regulated (defined by the lowest

FDR-corrected p values) genes (top 50 for VPA and top 50

for MeHg) were selected for each test system (Table S1),

and their relative expression levels were displayed as heat

maps. For all test systems, striking differences were

observed between the regulation patterns of VPA and

MeHg. Clustering analysis showed that VPA samples were

clearly separated from the MeHg samples (Fig. 2). This

effect was even more pronounced when clustering was

performed with the 100 top genes regulated by VPA (Fig.

S2A). Under these conditions, the differences between

MeHg and negative controls were small or not apparent.

Therefore, clustering was also performed with the top 100

genes regulated by MeHg. Under these conditions, MeHg

samples were clearly separated from those treated with

D-mannitol/DMSO (Fig. S2B).

The number of significantly altered Affymetrix DMA

probe sets (PS) was much higher for VPA compared to

MeHg. The sum of all PS changed by VPA in the test

systems UKK, UKN1 and JRC was 15386; for MeHg, the

sum was 1246 PS (Table S1, Fig. 3). This striking differ-

ence was observed, although both compounds were used at

their respective BMC in each test system. Exposure to the

negative controls did not result in any significant changes

(Fig. 3). Thus, the extent of the responses of the neurally

differentiating hESC to the different developmental neu-

rotoxicants appears to be compound-specific. Moreover,
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the responses to the two model toxicants differed qualita-

tively (Fig. 2; Fig. S2). The ability to clearly distinguish

known toxicants suggests that the test systems would dis-

tinguish unknown classes of potential toxicants. It may be

speculated that safety liabilities of unknown chemicals for

humans may be predicted by comparing their effects in the

test systems with those of known toxicants and non-toxi-

cants. The technical and statistical basis of the above initial

findings, together with their potential biological and toxi-

cological implications was explored further in the follow-

ing extended test battery.

Differential constitutive and toxicant-induced responses

of the test battery

One may hypothesise that MeHg showed only relatively

weak effects in the initial testing (UKK, UKN1 and JRC)

as all these systems only generate immature cells, and such

cells may be relatively resistant to MeHg. Alternatively,

such test systems may lack key targets of mercury toxicity.

Such an assumption would be in agreement with findings in

neuronally differentiating murine ESC, which were highly

sensitive to MeHg during the late neuronal maturation

phase, but relatively insensitive during the initial phase of

neural precursor formation (Zimmer et al. 2011b). For a

broader coverage of effects during later phases of neuro-

genesis, two additional test systems were used (Fig. 1,

UNIGE and UKN4). The UNIGE hESC-based test system

covers the developmental phase after neural stem cell

formation. The UKN4 test system was used as reference, as

this system is well characterised not only for transcriptome

changes, but in particular for functional and phenotypic

effects (Stiegler et al. 2011). From the literature, it is

known that MeHg inhibits neurite outgrowth in this system,

and transcriptome analysis was performed at a concentra-

tion known from previous studies to affect neurites (Stie-

gler et al. 2011).

The extended test battery (UKK, JRC, UKN1, UKN4

and UNIGE) was used for additional testing. The effects of

MeHg were examined in all systems at the respective

BMC, in addition to one lower concentration (LOW). The

latter was determined by dividing the BMC by a factor of

four (Fig. S1). Additional experiments were also performed

with VPA. The compound was tested at two relatively

similar concentrations in JRC (to test the reproducibility of

the response). It was also examined at fourfold different

concentrations in UKK (to test potential concentration

dependencies of the response). The number of differen-

tially expressed PS for each condition is summarised in

Fig. 3. This broad experimental approach showed that the

transcriptional response of differentiating hESC to MeHg is

indeed very limited. Also, the test systems using more mature

cells (UKN4 and UNIGE) did not show any significant

response when stringent FDR corrections were used.

Comparison of the results before and after FDR cor-

rection showed the unmistakeable need for appropriate

JRCUKK UKN1

MeHgVPAMannitol DMSO

Fig. 2 Differential alterations of gene expression by valproic acid

(VPA) and methylmercury (MeHg). Three different test systems

(UKK, UKN1 and JRC) were exposed to VPA (blue label on top of

the heatmap) or MeHg (green label) at their respective benchmark

concentration, or to D-mannitol (red) or DMSO (dark red). The

differentially expressed genes (vs untreated controls) were determined

in 4–5 independent experiments (shown as columns of the heatmaps).

The similarity of the gene expression patterns is indicated by the

Pearson’s distance dendrogram at the top. The heatmaps are based on

100 selected genes. These comprise the 50 genes with the lowest

adjusted p values according to the Limma t test for regulation by

MeHg, and 50 genes with the lowest adjusted p values for VPA. The

colours of the heatmap indicate the relative gene regulation level

above (red) or below (yellow) the average for each row
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statistical treatment of the data. Although the choice of a

5 % significance level will generate on average 2734 false

positives when 54675 PS are analysed (as in this study), it

can at times still be counter-intuitive for toxicologists when

none of the more than 2000 identified genes is significant

after FDR correction. The effect of FDR correction in the

present study is visualized in the form of volcano plots.

This form of display orthogonally separates the two

parameters usually considered important in gene expres-

sion analysis: the fold change and the significance level. As

the FDR correction only affects the significance level, one

can see the ‘volcano’ heights being compressed, while the

width remains the same; for instance, in the case of JRC

incubated with 273 nM MeHg (BMC), all apparently sig-

nificant PS dropped below the usual significance level

(p \ 0.05). Also, with UKK exposed to 500 lM VPA

(20 % of the BMC), the number of 2524 PS that appeared

to be significantly up-regulated before FDR correction

dropped down to four really significant PS after FDR

correction. Notably, the apparent significances were ‘lost’,

although several PS appeared to be ‘regulated’ more than

twofold, at times even up to fourfold (Fig. 4, Fig. S3). It

should be noted that the gene expression response occurred

within a narrow range of concentrations. The FDR-cor-

rected data sets showed that the number of regulated probe

sets can change from several thousands to zero within a

fourfold concentration range. Even a lowering of the test

concentration by only 20 % (relative to the BMC) resulted

in a reduction of the identified PS, at least in one system in

which this was tested (JRC). However, more than 90 % of

the PS identified at the low concentration in this assay were

also identified at the high concentration (Fig. 5). This good

overlap confirmed a robust and reproducible test system

response. When more stringent conditions were used for

filtering, such as the requirement for a C4-fold change or

for a lower p value, the good overlap between the two

concentrations was maintained (Fig. 5). Altogether, these

data suggest that the most pronounced and robust tran-

scriptional responses can be measured at toxicant concen-

trations, which are close to or at the BMC.

To obtain a better overview of how the different test

systems are related to one another, we performed a prin-

cipal component analysis (PCA) encompassing untreated

controls and non-differentiated H9 hESC, in addition to all

treated samples. This approach allowed the visualization of

the overall transcript patterns measured by 190 DMA on a

2-dimensional PCA space (Fig. 6a). Several conclusions

can be drawn from a qualitative analysis of the PCA pre-

sentation: First, all test systems clearly differed from non-

differentiated hESC. Second, all test systems differed from

one another, that is, the variance between the different test

systems was larger than the variance of individual samples

Probe sets JRC UKK UKN1 UKN4 UNIGE
MeHg 273 nM 68 nM 25 nM 1000 nM 250 nM 1500 nM 375 nM 200 nM 50 nM 800 nM 160 nM 40 nM

not 625 605 260 5450 3348 6445 2639 2817 3820 2800 724 1403not 
adjusted

↑
↓ 960 621 278 4813 2231 4540 2870 2791 4837 2599 750 1655

adjusted
↑ 0 0 0 407 0 375 0 0 0 0 0 0

↓ 0 0 0 420 0 44 0 0 2 0 0 0

VPA 1.21 mM 1.05 mM 2 mM 0.5 mM 0.6 mM

nd nd
not

adjusted

↑ 9542 8882 7881 2524 8450

↓ 9933 9108 8109 1739 9151

adjusted
↑ 3976 2979 2127 4 2164

↓ 3817 2754 1765 0 1533

Mannitol 100 mM 1 mM 40 mM

nd nd

0.05 mM 0.001 mM

not
adjusted

↑ 93745140220993402

↓ 07838410249315731

adjusted
↑ 00000

0 0 0 0 0↓ 0 0 0 0 0

Fig. 3 Overview of differentially expressed genes in all test systems.

Positive and negative control compounds were tested in the JRC,

UKK, UKN1, UKN4 and UNIGE test systems. The test concentra-

tions for methylmercury (MeHg), valproic acid (VPA) and D-man-

nitol (Mannitol) are indicated in the white fields. The number of

significantly altered probe sets (PS) is indicated separately for up-

regulations (red) and down-regulations (blue). The results for testing

without FDR adjustment are indicated in pale-coloured fields. The

results after FDR adjustment by the Benjamini–Yekutieli method are

indicated in white bold numbers. The highest compound concentra-

tion tested corresponded to the BMC of the respective test system.

The highest test concentration (800 nM) was five times higher than

the BMC (160 nM) for UNIGE only. nd not done
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within a given test system. Third, samples from one test

system clustered together, whether they had been treated

with VPA, MeHg or solvent. On the other hand, samples

treated, for example, with MeHg in different test systems

did not cluster together in this form of data presentation. It

is noteworthy, that presentation of data in the form of such

a comprehensive PCA does not allow the identification of

compound effects, although large, statistically significant

transcriptome changes occurred (e.g. VPA vs solvent

control). To better visualise compound effects, a different

statistical treatment is required before the data are pre-

sented; for instance, the large influence of the different test

systems can be attenuated by the subtraction of the corre-

sponding controls before display (see below and Fig. 7).

The distinct clustering of all test systems to a different

area of the PCA plot suggests that the test battery is not

redundant. Each individual test system seems to react with

different transcriptome changes, and the combination of the
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Fig. 4 Correlation of fold

change and significance level of

gene expression for different

statistical approaches. Data

were generated and calculated

for each combination of test

system and compound, as

illustrated in Fig. 3. In the

volcano plot diagrams, fold

changes of the compound-

induced gene expression are

shown on the x-axis (log2-

scale). The y-axis shows

negative logarithmic-adjusted

p values of a LIMMA t test

(-log10(p value)). The p values

were a FDR-adjusted, or b not

FDR-adjusted. The dashed lines
show the significance level of

p = 0.05. The dotted lines show

an example for the

p = 0.000001 significance level

for orientation. All other test

systems and compounds are

shown in the supplemental

material (Fig. S3)
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tests may thus provide richer data than any individual test.

This would imply that the different systems would be able

to identify different toxicant effects and thus be comple-

mentary in their toxicological information. The test battery

may thus constitute an important step towards the

replacement of animal tests by information-rich human

cell-based models (Hartung and Leist 2008; Leist et al.

2008b). This will, however, require further testing and

validation (Leist et al. 2012). A second important obser-

vation was the presence of outliers in some samples, which

will be investigated in greater detail in the following sec-

tion (Fig. 6a).

Control of intra-group variability and batch effects

The PCA indicated that eight of the DMA of UKN1

clustered separately from all other UKN1 samples. The

commonality amongst the eight DMA was that they were

measured on a different day compared to the other samples.

Four corresponded to controls and four to samples treated

with VPA. Thus, the clustering was not treatment-related.

A similar situation was observed for ten samples of UNIGE

(Fig. 6a). When only the 500 probe sets with the highest

variance were considered for the PCA, the ‘outliers’ moved

partially or completely back, that is, they clustered together

with the other samples within their test system (Fig. 6b).

This suggested that genes with a low variance had con-

tributed to the outlier effect. A graphical presentation of the

variances of all DMA performed for this study indeed

indicated that the ‘outliers’ had a higher variance of the

fluorescence signals, although the average signals were

quite similar to all other DMA (Fig. 6c). These data sug-

gest that the ‘distant clustering’ samples are the conse-

quence of a batch effect.

The presented study is still ongoing and even larger

numbers of samples will have to be studied. This makes it

p-value

P ≤ 0.05 P ≤ 0.01JRC (VPA) 

ol = 91% ol = 92%

≥ 1

5

high: 1.21 mM
low:  1.05 mM
PS:   54675
ol:     overlap (in %)

ol = 92% ol = 92%ol = 91%

F
o
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h
an

g
e

≥ 2

ol 90% ol 90% ol 92%

≥ 4

 =  =  = 

P ≤ 1

Fig. 5 Overlap of differentially expressed probe sets (PS) at different

concentrations. The JRC test system was exposed to VPA at a high

(=BMC) and low concentration in five independent experiments. The

circles of the Venn diagrams show the numbers of PS that were

influenced by the two experimental conditions. The overlap gives the

number of genes influenced both at the low and the high concentra-

tion. The fraction of the genes in the overlap (ol) with respect to all

genes altered at the low concentration is indicated above each

diagram. The number at the lower right corners indicates the number

of PS not influenced by the test compound at any concentration.

Significance was determined by the LIMMA FDR-adjusted t test. The

first column shows results without restriction by the p value and

examines the effect of restrictions by the fold-change value on the

number of PS identified. The second column imposes the additional

restriction that all identified PS should have a p value below 0.05. The

third column shows the results when only PS with a p value below

0.01 are selected
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impossible to analyse all samples in a single batch.

Methods to control for batch effects will therefore be

required. As indicated here, one possibility is to include

only the PS with highest variability between the samples

into the analysis. As an alternative approach, the corre-

sponding control values were subtracted from the com-

pound-treated samples before the PCA. This form of

presentation clearly separated VPA and MeHg incubated

samples, and the results obtained by clustering analysis

within the individual test systems were confirmed, also

when this multi-systems approach was chosen (Fig. 7a).

The subtraction of the controls resulted in the visualization

of treatment effects in the PCA that were not visible when

the non-processed data were used (Fig. 6). When only the

500 PS with the highest variance—rather than all 54,575

PS—were included, there was a more defined clustering of

the VPA samples compared to the MeHg samples

(Fig. 7b). The reduction to 500 PS also resulted in a better

clustering of other ‘distant clustering’ samples. A stepwise

reduction of PS showed that 500 PS seems to represent a

reasonable choice, although even smaller numbers, for

example, 200 PS, would be possible (Fig S4). An

JRC UKK UKN1 UKN4 UNIGE

G
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e 
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si
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al
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A

C

B

hESC

hESC (n = 21)

Fig. 6 Identification and correction of DNA microarray (DMA)

batch effects. The signal of all PS was determined in five different test

systems after incubation with compounds as in Fig. 3. The data for

every experiment plus those of 25 untreated controls and solvent

controls and 21 samples of untreated hESC (dark green circles with

light blue filling) were used for principal component analyses (PCA)

of altogether 190 DMA. Data from the different test systems are

colour-coded, and each DMA is displayed as a circle in the PCA plot.

Circles filled in yellow code for DMA that clustered away from their

respective main groups, and that were considered outliers due to a

batch effect, as they were measured at another time point compared to

the other samples. The axis labels indicate the percentage of the total

variance covered by the respective axis a The PCA is based on all PS.

b The PCA is based only on the 500 probe sets with the highest

variance. c The distribution of the PS fluorescence signals (indicated

here as ‘gene expression value’) is displayed for all 169 test system

DMA of this study (each DMA is represented by one box of the box
plot). The size of the boxes indicates the 25th and 75th percentile (the

lower and upper quartiles, respectively) of the PS. The solid lines in

the box indicate the 50th quantile of the distribution. The height of the

box being equal to the difference between the upper and lower

quartiles is called the interquartile range (IQR). The dashed lines
(whiskers) indicate gene expression values within the range of 1.5

IQR from the 25th and 75th percentile. The dots outside the dashed
lines (appearing as solid line due to the print resolution) represent the

outliers within one DMA. The DMA corresponding to the differently

clustering samples in a is indicated by boxes filled with yellow, and

they show a higher variance. The test system colour coding of part a,

b and c is identical
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interesting implication of this observation is that the scat-

tering of samples within one group can be caused by rel-

atively large numbers of PS with low variability and not

necessarily by the PS which show the highest variance.

These ‘high variance PS’ appear to be highly relevant for

further analysis.

A

PC1 (17 %)
PC2 (10 %)

JRC

PC1 (37 %)
PC2 (18 %)

JRC UKK UKN1

UKN4 UNIGE All Systems

B

MeHg

VPA
Mannitol

DMSO

UKK UKN1

UKN4 UNIGE All Systems
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Robustness analysis: role of the number of biological

replicates

In the present study, five biological replicates (independent

experiments performed at different days) were generated

for most test conditions. One technical replicate (one

DMA) was analysed per experiment. To study whether

lower numbers of DMA would also lead to similar results

in the present data set, we chose a statistical permutation

approach that simulated the situation of choosing only 2, 3

or 4 of the 5 experimental replicates (Note that each rep-

licate consisted of a matched pair of DMA for control and

for treated cells). For each possible combination of these

pairs (here for simplicity called DMA or replicates), the

number of PS that overlapped with the original set of PS

was identified. In addition, new PS that had not been

originally identified were also detected. The expectation

was that whether 5 DMAs were redundant, then the per-

centage of original PS identified with 3 or 4 DMA should

also be high, and the number of new PS arising from the

new analysis should be low. This approach was run under

different conditions. The significant genes were identified

by the less stringent Benjamini–Hochberg FDR correction

(Fig. 8) or by the very stringent Benjamini–Yekutieli cor-

rection (Fig. S5). Moreover, either all PS were considered,

or only the ones regulated more than twofold (Fig. 8, Fig.

S5).

The results showed that there was only a moderate

advantage of using 5 DMA instead of 4 when only PS with

C2-fold changes were considered in the current data set.

Under this condition, and using less stringent FDR cor-

rection, even 3 DMA would have resulted in the identifi-

cation of a large majority of genes. The permutation

analysis was also found to be a suitable tool to test data

consistency and robustness of the analysis method used.

For most test systems, removal of any of the 5 DMA (pairs)

to generate a new data set based on 4 DMA yielded largely

similar results. This suggests that all different experiments

had generated largely similar data, although they were

performed with different cell cultures on different days.

The situation was different for the MeHg samples from

UKN1, where removal of one specific DMA resulted in the

identification of more than twice as many significant PS

compared to the remaining 4 DMA. All combinations of

the three remaining DMA that lacked the apparent ‘outlier’

identified much larger numbers of PS compared to the

combinations that included that specific DMA (pair)

(Fig. 8). Such an analysis may therefore be used to develop

statistical techniques for the identification of outliers.

The relationship between cytotoxic response

and DNT-specific transcriptome changes

The choice of toxicant concentrations for gene expression

analysis is a critical step. If too high concentrations are

used, cell viability will be compromised. The cell death

occurring under these conditions may result in unspecific

‘toxicity-associated’ gene expression responses. Con-

versely, the use of too low concentrations of test com-

pounds would result in false-negative responses and in the

inability to identify any alterations of the transcriptome.

The magnitude of the response may be dependent on the

concentration of the test compound, which is especially

important when compounds are compared and possibly

classified or ranked according to their specific responses.

Furthermore, information on the concentration dependence

may be used for more detailed characterisation of com-

pound effects, and possibly for the identification of the

hazardous responses as opposed to counter-regulations and

unspecific responses (Theunissen et al. 2012a, b).

In the present study, the BMC of the cytotoxicity test

(i.e. the highest non-cytotoxic concentration) was used as

the standard test concentration (Fig S1). Although tran-

scriptional responses can be triggered by MeHg and VPA

at concentrations considerably lower than the cytotoxic

concentration (Balmer et al. 2012; Zimmer et al. 2011b),

we found here that the majority of responses to MeHg in

UKN1 was lost even at only fourfold lower concentrations

than the BMC. We made similar observations for VPA in

other test systems.

In in vivo studies, DNT is defined as effects on the pups

in the absence of maternal toxicity. A corresponding defi-

nition for in vitro test systems would be ‘specific altera-

tions of differentiation in the absence of overt (unspecific)

cytotoxicity’. Fulfilment of this condition was carefully

explored, and several features of our data indicate that

measurements at the BMC do in fact allow us to draw

conclusions on DNT-specific disturbances triggered by the

test compounds: First, we tested whether known toxic

concentrations (800 nM MeHg in UNIGE; BMC was 160

nM) would lead to unspecific transcriptional responses

(Fig. 3). Also under this condition, no significant PS were

Fig. 7 Principal component analysis (PCA) of relative gene expres-

sion data after subtraction of solvent controls. a The signal of all PS

was determined in five different test systems (UKK, UKN1, JRC,

UKN4 and UNIGE) after incubation with compounds as in Fig. 3.

Then, the values for the respective controls were subtracted from the

values of the DMA treated with VPA at the BMC (large blue) or at

the LOW concentration (small blue dots), or MeHg (large and small
green dots), or D-mannitol (red), or DMSO (black). These data were

then used for PCA. The lower right panel shows all data together. The

other panels show the data for individual test systems within the same

axes as for all systems. In a, all PS were included, while in b, only the

500 PS with the highest variance were used. Note for instances, the

outliers in UNIGE marked by arrows in a, and their perfect clustering

in b

b
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identified, that is, no cell death genes were triggered. We

also examined the effect of accidental variations of the

cytotoxicity from experiment to experiment. The fixed

BMC indicated here was determined from a set of pilot

experiments. However, the actual cytotoxicity in the indi-

vidual experiments in which mRNA levels were analysed

showed some biological variation, which was documented,

for example, for UKN1 and UKN4. Examination of these

data showed that the MeHg concentration used for UKN4

reduced cell viability more than the one used for UKN1.

However, no response was observed in UKN4, while an

apparently specific response was triggered in UKN1. Sec-

ond, some concentrations used for testing VPA in UKN1

triggered toxicities of more than 10 % (data not shown) in

the experiments used for DMA analysis (due to daily

experimental variations in sensitivity), but cell death-rela-

ted GO terms were not identified. In contrast, MeHg in the

same system did not trigger measurable cytotoxicity, but

GO term analysis indicated an up-regulation of genes

related to apoptosis and neuronal death. Thus, the use of

compounds at the BMC does not seem to be problematic.

In the case of MeHg, triggering of cytotoxic responses is

rather a specific feature of the compound (protein modifier,

trigger of oxidative stress). This may be an explanation for

the low or absent transcriptional responses in the test sys-

tems. Third, candidate genes typically related to cell death,

DNA damage and oxidative stress were examined in

UKN1. Such genes were not overrepresented amongst the

VPA-regulated genes. Moreover, their extent of regulation

did not correlate with the overall magnitude of regulation

Fig. 8 Simulation of different numbers of experiments (pairs of

DMA) and their impact on the numbers of significantly regulated PS.

VPA was tested in the test systems JRC and UKK at its BMC in five

independent experiments, and in UKN1 in four experiments. MeHg

was tested in UKN1 and UKK in five experiments. The number of

significantly regulated genes (Benjamini–Hochberg FDR correction)

was calculated without further restrictions (left) or with the restric-

tions that the PS should be regulated more than twofold (right). The

numbers of PS are indicated above the dashed black lines, which were

set as 100 % reference points. The dark blue bars indicate how many

of these PS were identified when different permutations of 2, 3 or 4

experiments (indicated as grey headings) were used. The light blue
bars indicate how many additional PS were identified when only

subsets of the original five (4) experiments were analysed; for

instance, the five bars in the panel with the coordinates 4/JRC:VPA

represent the five possible ways of omitting one of the experiments.

The 10 bars in the panel with the coordinates 3/JRC: VPA represent

the 10 possible permutations of leaving out two of the experiments

and then recalculating the significant PS on the basis of the remaining

3 DMA
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in the individual experiments (not shown). Fourth, it was

examined how far the responses to different toxicants

overlapped. In case of a strong component of cytotoxicity,

it was expected that typical stress genes were induced and

similarities would be observed in the regulation pattern of

different toxicants. However, only a small fraction of the

overall altered PS overlapped between VPA and MeHg [as

examined in detail below, (Fig. 10)]. Even though a

‘common transcription factor response’ between VPA and

MeHg of 16 transcription factors (TFs) was observed, there

was still a majority of TFs unique for MeHg or VPA. Thus,

two compounds, both used at the BMC, triggered different

responses, with no common cytotoxicity pattern.

In summary, the data indicate that the measurement of

transcriptional responses at the BMC is a reasonable

approach, although further studies are required for a better

understanding of a possible ‘common toxicity-associated

response’. Our limited set of data indicates that concen-

trations beyond the BMC do not necessarily result in an

unspecific transcriptional response reflecting cytotoxicity.

Relationship of the BMC with respect to the in vivo

relevant concentration range

Besides the technical considerations concerning the BMC

and cytotoxicity, the relevance of the chosen concentra-

tions for the in vivo conditions needs to be considered.

When in vitro concentrations differ by more than one order

of magnitude from concentrations causing toxicity in vivo,

pathways of toxicity may become activated that are not

relevant to the in vivo situation. Unfortunately, human

exposure measurements of DNT compounds are often

poorly documented and concentrations in the brain are only

rarely known. Nevertheless, human relevant concentrations

of 0.005–0.5 lM MeHg and 500–1,000 lM VPA have

been reported in a recently published review (Kadereit

et al. 2012). To obtain a clearer picture, we used physiol-

ogy-based pharmacokinetic (PBPK) modelling to calculate

in vivo relevant blood and brain concentrations from the

doses that caused DNT in animal studies (Fig. 9; Fig.

S6A). Oral exposure to MeHg of 0.01 mg/kg on gestation

days 6–9 is predicted to result in a maximum total blood

concentration of 0.9 lM (Fig. 9a). Thus, similar nominal

concentrations should show activity in vitro, although the

actual amount of MeHg penetrating the cells may addi-

tionally depend on cysteine concentrations in the different

media of the test systems. A VPA plasma peak concen-

tration of 6.6 mM is predicted after a single oral dose of

350 mg/kg. This dose resulted in the same model in DNT

(Rodier et al. 1996) (Fig. 9b). For extrapolation of such

data to in vitro systems, corrections for differences in

protein binding and lipid partitioning in plasma vs cell

culture medium have to be considered (Fig. S6B). Our

calculations suggest that the expected equivalent nominal

concentrations in vitro are 3.3 mM for UKK, 2.7 mM for

UKN1 and 0.9 mM for JRC, UKN4 and UNIGE. These

results show that the BMC concentrations used in this

study are within the same order of magnitude as the in vivo

concentrations which caused DNT in humans and animals.

Remarkable overlap of overrepresented TFBS amongst

genes influenced by VPA and MeHg

The main focus of this study was to investigate the tech-

nical feasibility of using transcriptomics as a major
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Fig. 9 Physiologically based pharmacokinetic (PBPK) modelling of

the positive control compounds MeHg and VPA. Systemic concen-

trations of MeHg (total blood concentration, upper panel) and VPA

(plasma concentration, lower panel) in rats following exposure to a

developmental neurotoxic dose predicted by PBPK modelling.

a PBPK simulation of MeHg total blood concentration in rat dams

upon daily oral gavage of 4 mg/kg MeHg on gestation days 6–9, the

lowest developmentally neurotoxic dose in Bornhausen et al. (1980).

Predicted maximum total blood concentration of 0.9 lM is indicated.

Maternal and foetal blood concentrations are considered similar. The

foetal total blood concentration is assumed to be available for foetal

brain exposure and equated to the nominal concentration in in vitro

test media. b PBPK simulation of VPA plasma concentration in rat

dams upon a bolus intraperitoneal dose of 350 mg/kg, the lowest dose

causing relevant effects in Rodier et al. (1996), resulting in a

predicted maximum total blood concentration of 6.6 mM (as

indicated). Comparable concentrations have been found in maternal

and foetal plasma. The unbound plasma concentration in vivo is

equated to the unbound concentration in in vitro test media
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endpoint to characterise responses of hESC-based test

systems. For a detailed characterisation of the biological

responses of the test systems to the compounds, a different

experimental design would be required. Nevertheless, we

performed some initial comparisons of gene ontologies

(GO) and transcription factor binding sites (TFBS) that

were overrepresented amongst the regulated PS. The main

aim was to find out whether simple analysis tools can

reveal differences and commonalities of the transcriptome

responses.

For this approach, five sets of data were compared: the

responses of UKN1, JRC and UKK to VPA and the

responses of UKN1 and UKK to MeHg (all at BMC con-

centration). To obtain an overview over the main biological

processes affected by co-regulated genes, the statistically

overrepresented GO terms were identified and displayed

for each test system and condition (Fig. S7); for instance,

the genes down-regulated in each test system by VPA

pointed to effects of the toxicant on RNA processing, and

on chromatin modification/histone acetylation. The latter

results are consistent with the known activity of the com-

pound as a histone deacetylase inhibitor (HDACi). GO

terms related to effects on ‘neural tube formation’ ‘neuron

development’ and ‘embryonic morphogenesis’ showed up

for different conditions. These findings gave a hint that

there may be an overlap of higher order biological

responses across the test systems and compounds. How-

ever, we are aware of the fact that the GO term analysis is a

very rough tool, and that GO term annotations of many

genes can be problematic (Weng et al. 2012). Therefore,

we chose the alternative approach of comparing the overlap

of regulated PS between the test systems with the over-

representation of 267 human TFBS (as indirect indicator of

higher order linked biological processes).

First, the overlap of test systems treated with the same

compound was analysed. VPA regulated 571 PS in all three

test systems (Fig. 10a). Thus, only a relatively minor

overlap occurred on the level of individual PS. The PS for

VPA showed enrichment of binding sites for 56 (JRC), 57

(UKK) and 66 (UKN1) TFs. Twenty-five TFBSs over-

lapped between all samples treated with VPA (Fig. 10a),

that is, there was a relatively high overlap of responses on

the level of TFBS. A similar behaviour was observed after

treatment with MeHg: less than 10 % of the PS overlapped

between UKN1 and UKK. Amongst these PS, 46 TFBS

(UKN1) or 44 TFBS (UKK) were overrepresented and out

of these, twenty ([40 %) overlapped (Fig. 10b).

Probe sets TF binding sites

JRC
JRC

UKN1

UKK

UKN1

UKK
4529

1584

1624

1464

1229
273

571

15

15

34

13

3
4

25

39

381 789 26 20 24

UKN1UKN1 UKK UKK

36

3

568 4 16 9

205

A VPA

B MeHg

C JRC, UKK, UKN1

D UKK

MeHg VPA MeHg VPA

MeHg VPA MeHg VPA

622 3687 22 22 35

UKN1

MeHg

277

142

3555 17 29 37

E

VPA MeHg VPA

Fig. 10 Overlap of altered genes and of overrepresented transcription

factor (TF) binding sites between test conditions. Five sets of data, as

described in Fig. 3 were used for further analysis and comparisons:

exposure of UKK and UKN1 to both VPA and MeHg and of JRC to

VPA. All toxicants were used at their BMC. The numbers of

differentially expressed probe sets (Limma t test, Benjamin–Yekuti-

eli-adjusted p value \0.05), and enriched transcription factor (TF)

binding sites (PRIMA, p value \0.05) were identified. The data are

presented as pairs of Venn diagrams, with PS to the left and TFBS to

the right. Numbers on the diagrams show the relevant count for each

sector of the diagram. The following sets of data are compared:

a responses to VPA treatment in the JRC, UKK and UKN1 test

systems; b responses to MeHg treatment in UKK and UKN1 (N.B. for

display rules: 44 TFBS were changed in UKK, 20 of which

overlapped with UKN1); c the circles marked ‘VPA’ show the

number of PS/TFBS regulated in all three test systems by VPA, the

circles marked ‘MeHg’ show the number of features co-regulated in

UKN1 and UKK by MeHg; d responses of UKK alone to MeHg or

VPA; e responses of UKN1 to MeHg and VPA

b
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In view of these findings, it was interesting to look at an

overlap of transcriptome changes common to each of the

toxicants in all test systems. We identified the PS and

TFBS jointly modified in all three test systems by VPA or

in UKN1 and UKK by MeHg. Only 3 (0.5 %) of the PS

generally altered by VPA were also significantly affected

by MeHg (Fig. 10c). In contrast, more than 50 % of all

TFBS common to MeHg or VPA overlapped also between

the two compounds (Fig. 10c). The large overlap of com-

monly enriched TFBS between all test systems and com-

pounds provides evidence for the existence of a set of

‘common transcription factors’ (including, e.g., E2F, ETF,

SP1 and AP-2 (Fig. S8). The only TFBS enriched by all

VPA treatments, but not MeHg, was the homeobox gene

Hmx3 (also known as NKX5.1). The only TFBS enriched

by all MeHg treatments, but not VPA, was the one for

GCM transcriptional regulators (Fig. S8).

Similar comparisons of compound responses were also

performed in individual test systems; for instance, in UKK,

only 205 PS of the 3,892 PS regulated by VPA overlapped

with those affected by MeHg (Fig. 10d). On the level of

TFBS, the overlap was much larger, as 22 of the 57 TFBS

enriched in the genes regulated by VPA, were also found

for MeHg (Fig. S9A).

Treatment of the UKN1 test system with VPA or MeHg

resulted in the regulation of genes associated with 66 TFBS

in their promoter in the case of VPA and 46 TFBS in the

case of MeHg. Of these, 29 (comprising, e.g., AP-2, EGR,

STAT1, HIF-1, AhR and Sp1) were similar for both com-

pounds, 37 (comprising, e.g., HSF-1, IRF-1, PAX5 and

NKX2-5) were specific for VPA, and 17 (comprising, e.g.,

ATF4, HOXA4 and ZIC2) specific for MeHg (Fig. S9B).

Again, the overlap of TFBS was much larger than the one of

individual PS. Only 142 of the 3,697 genes regulated by

VPA overlapped with those affected by MeHg (Fig. 10e).

Besides the commonly regulated TFBS, we found for

each compound also TFBS that were specific for the test

system and the chemical used. These may be used as sig-

natures for related chemicals within one class, while the

commonly affected TFBS may give a general indication of

toxicity (Supplementary Table S2). In conclusion, a

remarkable observation of the present study is that the

TFBS showed an astonishingly large overlap in view of the

very small overlap on the level of the individual genes.

Analysis of further compounds is required to determine

whether the emerging concept of a ‘common toxic response

TFBS’ and a ‘compound-specific TFBS’ is universal.
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