2,009 research outputs found

    Minority carrier diffusion lengths and mobilities in low-doped n-InGaAs for focal plane array applications

    Full text link
    The hole diffusion length in n-InGaAs is extracted for two samples of different doping concentrations using a set of long and thin diffused junction diodes separated by various distances on the order of the diffusion length. The methodology is described, including the ensuing analysis which yields diffusion lengths between 70 - 85 um at room temperature for doping concentrations in the range of 5 - 9 x 10^15 cm-3. The analysis also provides insight into the minority carrier mobility which is a parameter not commonly reported in the literature. Hole mobilities on the order of 500 - 750 cm2/Vs are reported for the aforementioned doping range, which are comparable albeit longer than the majority hole mobility for the same doping magnitude in p-InGaAs. A radiative recombination coefficient of (0.5-0.2)x10^-10 cm^-3s^-1 is also extracted from the ensuing analysis for an InGaAs thickness of 2.7 um. Preliminary evidence is also given for both heavy and light hole diffusion. The dark current of InP/InGaAs p-i-n photodetectors with 25 and 15 um pitches are then calibrated to device simulations and correlated to the extracted diffusion lengths and doping concentrations. An effective Shockley-Read-Hall lifetime of between 90-200 us provides the best fit to the dark current of these structures.Comment: 9 pages, 5 figure

    Heavy and light hole minority carrier transport properties in low-doped n-InGaAs lattice matched to InP

    Full text link
    Minority carrier diffusion lengths in low-doped n-InGaAs using InP/InGaAs double-heterostructures are reported using a simple electrical technique. The contributions from heavy and light holes are also extracted using this methodology, including minority carrier mobilities and lifetimes. Heavy holes are shown to initially dominate the transport due to their higher valence band density of states, but at large diffusion distances, the light holes begin to dominate due to their larger diffusion length. It is found that heavy holes have a diffusion length of 54.5 +/- 0.6 microns for an n-InGaAs doping of 8.4 x 10^15 cm-3 at room temperature, whereas light holes have a diffusion length in excess of 140 microns. Heavy holes demonstrate a mobility of 692 +/- 63 cm2/Vs and a lifetime of 1.7 +/- 0.2 microsec, whereas light holes demonstrate a mobility of 6200 +/- 960 cm-2/Vs and a slightly longer lifetime of 2.6 +/- 1.0 microsec. The presented method, which is limited to low injection conditions, is capable of accurately resolving minority carrier transport properties.Comment: 16 pages, 13 figure

    Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting

    Get PDF
    Terahertz frequency-wavelet deconvolution is utilized specifically for the stratigraphic and subsurface investigation of art paintings with terahertz reflective imaging. In order to resolve the optically thin paint layers, a deconvolution technique is enhanced by the combination of frequency-domain filtering and stationary wavelet shrinkage, and applied to investigate a mid-20th century Italian oil painting on paperboard, After Fishing, by Ausonio Tanda. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed, demonstrating that terahertz frequencywavelet deconvolution can be an effective tool to characterize stratified systems with optically thin layers

    One of the closest exoplanet pairs to the 3:2 Mean Motion Resonance: K2-19b \& c

    Get PDF
    The K2 mission has recently begun to discover new and diverse planetary systems. In December 2014 Campaign 1 data from the mission was released, providing high-precision photometry for ~22000 objects over an 80 day timespan. We searched these data with the aim of detecting further important new objects. Our search through two separate pipelines led to the independent discovery of K2-19b \& c, a two-planet system of Neptune sized objects (4.2 and 7.2 RR_\oplus), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each show transits, sometimes simultaneously due to their proximity to resonance and alignment of conjunctions. We obtain further ground based photometry of the larger planet with the NITES telescope, demonstrating the presence of large transit timing variations (TTVs), and use the observed TTVs to place mass constraints on the transiting objects under the hypothesis that the objects are near but not in resonance. We then statistically validate the planets through the \texttt{PASTIS} tool, independently of the TTV analysis.Comment: 18 pages, 10 figures, accepted to A&A, updated to match published versio

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg

    Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report new STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S} particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    K/pi Fluctuations at Relativistic Energies

    Get PDF
    We report results for K/πK/\pi fluctuations from Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/πK/\pi fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at sNN\sqrt{s_{NN}} = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/πK/\pi fluctuations as well as results for K+/π+K^{+}/\pi^{+}, K/πK^{-}/\pi^{-}, K+/πK^{+}/\pi^{-}, and K/π+K^{-}/\pi^{+} fluctuations. We observe that the K/πK/\pi fluctuations scale with the multiplicity density, dN/dηdN/d\eta, rather than the number of participating nucleons.Comment: 6 pages, 4 figure

    The Close Binary Fraction as a Function of Stellar Parameters in APOGEE:A Strong Anti-Correlation With α Abundances

    Get PDF
    We use observations from the APOGEE survey to explore the relationship between stellar parameters and multiplicity. We combine high-resolution repeat spectroscopy for 41,363 dwarf and subgiant stars with abundance measurements from the APOGEE pipeline and distances and stellar parameters derived using \textit{Gaia} DR2 parallaxes from \cite{Sanders2018} to identify and characterise stellar multiples with periods below 30 years, corresponding to \drvm\gtrsim 3 \kms, where \drvm\ is the maximum APOGEE-detected shift in the radial velocities. Chemical composition is responsible for most of the variation in the close binary fraction in our sample, with stellar parameters like mass and age playing a secondary role. In addition to the previously identified strong anti-correlation between the close binary fraction and \feh\, we find that high abundances of α\alpha elements also suppress multiplicity at most values of \feh\ sampled by APOGEE. The anti-correlation between α\alpha abundances and multiplicity is substantially steeper than that observed for Fe, suggesting C, O, and Si in the form of dust and ices dominate the opacity of primordial protostellar disks and their propensity for fragmentation via gravitational stability. Near \feh{} = 0 dex, the bias-corrected close binary fraction (a<10a<10 au) decreases from \approx 100 per cent at \alh{} = -0.2 dex to \approx 15 per cent near \alh{} = 0.08 dex, with a suggestive turn-up to \approx20 per cent near \alh{} = 0.2. We conclude that the relationship between stellar multiplicity and chemical composition for sun-like dwarf stars in the field of the Milky Way is complex, and that this complexity should be accounted for in future studies of interacting binaries.Comment: 15 pages, 10 figures, plus appendices; accepted to MNRA
    corecore