115 research outputs found

    Listening to syncope

    Get PDF

    Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva

    Get PDF
    Sublingual film dosage forms for drugs used for fast symptomatic treatment have promise because they allow a rapid onset of action. The aim of this study was to prepare films of silodosin intended for sublingual administration for the symptomatic treatment of benign prostatic hyperplasia in men. Hydroxypropyl methylcellulose (HPMC) or hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were used as film-forming polymers. The effects of the polymers and the surfactant tocopherol polyethylene glycol succinate (TPGS) on the physico-mechanical properties and dissolution behavior of the films in simulated saliva were investigated. The eight silodosin oral films developed (F1–F8) contained 8 mg silodosin per 6 cm2 film and HPMC or HPMC-AS in drug:polymer ratios of 1:5 or 1:3, while four also contained TPGS (0.5% w/w). The films were characterized using DSC, TGA, SEM, and PXRD and the mechanical properties were investigated by measuring tensile strength, elongation at break and Young's modulus. The mechanical properties of the films were dependent on the ratio of polymer used. The in vitro dissolution and drug release studies indicated that HPMC-AS films disintegrated more quickly than HPMC films. Silodosin was shown to be dispersed within the polymers. Despite silodosin being submicronized in the HPMC films, the dissolution and drug release rate (time for 80% release) from HPMC films was significantly faster than from HPMC-AS films. TPGS increased the drug release rate to a greater extent with HPMC than with HPMC-AS. The degree of saturation of formulation F4 was >1, which shows potential for improving oral absorption of silodosin.Peer reviewe

    Long-term effect of anticoagulation following left atrial appendage occlusion with the LARIAT device in patients with nonvalvular atrial fibrillation : impact on thromboembolism, bleeding and mortality : real life data

    Get PDF
    Introduction: Indications for left atrial appendage occlusion (LAAO) are varied and patients require individual management strategies. However, currently no guidelines exist for postprocedure oral anticoagulation (OAC) after an LAAO procedure. Aim: To evaluate the effect of OAC on thromboembolism, bleeding and mortality following the LAAO procedure for patients with AF. Material and methods: One hundred and thirty-nine consecutive patients with nonvalvular atrial fibrillation (NVAF) who underwent LAAO with the LARIAT device were followed for at least 40 months. Decisions about OAC and its modifications were individualized based on clinical presentation, patient and physician preferences. Results: Following LAAO, 52 (41%) patients did not receive OAC (No-OAC group) and 75 (59%) patients received OAC (OAC group), without any intergroup differences in CHADS2, CHA2DS2-VASc score or other thromboembolic risk factors. The median HAS-BLED score was higher in the OAC-group (median 3 (3–4) vs. 3 (2–4), p = 0.014). During a median follow-up time of 51 (43–57) vs. 55 (48–59) months in the No-OAC group and in the OAC group (p = 0.19) there were no significant differences between groups in ischemic stroke/TIA, 0 (0%) vs. 2 (2.7%), other thromboembolic events, 0 (0%) vs. 1 (1.3%), life-threatening, disabling or major events, 2 (3.7%) vs. 2 (2.7%), or annual mortality rate, 1.9% vs. 0.9%, respectively. Conclusions: There is no need for OAC after the LAAO procedure. Omitting OAC after an LAAO procedure in AF patients: (1) has similar stroke prevention rates as patients on OAC, (2) has similar bleeding prevention rates as patients on OAC, (3) has similar safety endpoints and long-term efficacy as patients on OAC

    Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges

    Get PDF
    Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.Peer reviewedFinal Published versio

    Printing T3 and T4 oral drug combinations as a novel strategy for hypothyroidism

    Get PDF
    Hypothyroidism is a chronic and debilitating disease that is estimated to affect 3% of the general population. Clinical experience has highlighted the synergistic value of combining triiodothyronine (T3) and thyroxine (T4) for persistent or recurrent symptoms. However, thus far a platform that enables the simultaneous and independent dosing of more than one drug for oral administration has not been developed. Thermal inkjet (TIJ) printing is a potential solution to enable the dual deposition of T3 and T4 onto orodispersible films (ODFs) for therapy personalisation. In this study, a two-cartridge TIJ printer was modified such that it could print separate solutions of T3 and T4. Dose adjustments were achieved by printing solutions adjacent to each other, enabling therapeutic T3 (15-50 μg) and T4 dosages (60-180 μg) to be successfully printed. Excellent linearity was observed between the theoretical and measured dose for both T3 and T4 (R2 = 0.982 and 0.985, respectively) by changing the length of the print objective (Y-value). Rapid disintegration of the ODFs was achieved (< 45 seconds). As such, this study for the first time demonstrates the ability to produce personalised dose combinations by TIJ printing T3 and T4 onto the same substrate for oral administration

    Personalisation of warfarin therapy using thermal ink-jet printing

    Get PDF
    Warfarin is a widely used anticoagulant that is critical in reducing patient morbidity and mortality associated with thromboembolic disorders. However, its narrow therapeutic index and large inter-individual variability can lead to complex dosage regimes. Formulating warfarin as an orodispersible film (ODF) using thermal ink-jet (TIJ) printing could enable personalisation of therapy to simplify administration. Commercial TIJ printers are currently unsuitable for printing the milligram dosages, typically required for warfarin therapy. As such, this study aimed to modify a commercial TIJ printing system to formulate personalised warfarin ODFs containing therapeutic dosages. A TIJ printer was modified successfully with the printer functionality intact; the substrate (paper) rolling mechanism of the printer was replaced by printing onto a stationary stage. Free film substrates were composed of hydroxypropyl methylcellulose (20%w/w) and glycerol (3%w/w). The resulting ODFs were characterised for morphology, disintegration, solid-state properties and drug content. Printed film stability was assessed at 40 °C/75% relative humidity for 30 days. Therapeutic warfarin doses (1.25 and 2.5 mg) were successfully printed onto the film substrates. Excellent linearity was observed between the theoretical and measured dose by changing the warfarin feed concentration (R2 = 0.9999) and length of the print objective, i.e. the Y-value, (R2 = 0.9998). Rapid disintegration of the ODFs was achieved. As such, this study successfully formulated personalised warfarin ODFs using a modified TIJ printer, widening the range of applications for TIJ printing to formulate narrow therapeutic index drugs

    Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity and cardiac dysfunction: Therapeutic and molecular approach

    Get PDF
    Obesity has been implicated as a risk factor for insulin resistance and cardiovascular diseases (CVDs). Although the association between obesity and CVD is a well-established phenomenon, the precise mechanisms remain incompletely understood. This has led to a relative paucity of therapeutic measures for the prevention and treatment of CVD and associated metabolic disorders. Recent studies have shed light on the pivotal role of prolonged endoplasmic reticulum stress (ERS)-initiated activation of the unfolded protein response (UPR), and the ensuing chronic low-grade inflammation, and altered insulin signaling in promoting obesity-compromised cardiovascular system (CVS). In this aspect, potential ways of attenuating ERS-initiated UPR signaling seems a promising avenue for therapeutic interventions. We review intersecting role of obesity-induced ERS, chronic inflammation, insulin resistance, and oxidative stress in the discovery of targeted therapy. Moreover, this review highlights the current progress and strategies on therapeutics being explored in preclinical and clinical research to modulate ERS and UPR signaling

    Intestinal Lymphatic Delivery of Praziquantel by Solid Lipid Nanoparticles: Formulation Design, In Vitro and In Vivo Studies

    Get PDF
    The aim of the present work was to design and develop Praziquantal (PZQ) loaded solid lipid nanoparticles (PZQ-SLN) to improve the oral bioavailability by targeting intestinal lymphatic system. PZQ is practically insoluble in water and exhibits extensive hepatic first-pass metabolism. PZQ SLN were composed of triglycerides, lecithin and various aqueous surfactants; were optimized using hot homogenization followed by ultrasonication method. The optimized SLN had particle size of 123±3.41 nm, EE of 86.6±5.72%. The drug release of PZQ-SLN showed initial burst release followed by the sustained release. Inspite of zeta potential being around −10 mV, the optimized SLN were stable at storage conditions (5±3°C and 25±2°C/60±5% RH) for six months. TEM study confirmed the almost spherical shape similar to the control formulations. Solid state characterization using differential scanning calorimeter (DSC) and powder X-ray diffraction (PXRD) analysis confirmed the homogeneous distribution of PZQ within the lipid matrix. The 5.81-fold increase in AUC0→∞, after intraduodenal administration of PZQ-SLN in rats treated with saline in comparison to rats treated with cycloheximide (a blocker of intestinal lymphatic pathway), confirmed its intestinal lymphatic delivery. The experimental results indicate that SLN may offer a promising strategy for improving the therapeutic efficacy and reducing the dose
    • …
    corecore