83 research outputs found

    Identification of new, emerging HIV-1 unique recombinant forms and drug resistant viruses circulating in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV epidemic in Cameroon is characterized by a high degree of viral genetic diversity with circulating recombinant forms (CRFs) being predominant. The goal of our study was to determine recent trends in virus evolution and emergence of drug resistance in blood donors and HIV positive patients.</p> <p>Methodology</p> <p>Blood specimens of 73 individuals were collected from three cities and a few villages in Cameroon and viruses were isolated by co-cultivation with PBMCs. Nested PCR was performed for gag p17 (670 bp) pol (840 bp) and Env gp41 (461 bp) genes. Sequences were phylogenetically analyzed using a reference set of sequences from the Los Alamos database.</p> <p>Results</p> <p>Phylogenetic analysis based on partial sequences revealed that 65% (n = 48) of strains were CRF02_AG, 4% (n = 3) subtype F2, 1% each belonged to CRF06 (n = 1), CRF11 (n = 1), subtype G (n = 1), subtype D (n = 1), CRF22_01A1 (n = 1), and 26% (n = 18) were Unique Recombinant Forms (URFs). Most URFs contained CRF02_AG in one or two HIV gene fragments analyzed. Furthermore, pol sequences of 61 viruses revealed drug resistance in 55.5% of patients on therapy and 44% of drug naïve individuals in the RT and protease regions. Overall URFs that had a primary HIV subtype designation in the pol region showed higher HIV-1 p24 levels than other recombinant forms in cell culture based replication kinetics studies.</p> <p>Conclusions</p> <p>Our results indicate that although CRF02_AG continues to be the predominant strain in Cameroon, phylogenetically the HIV epidemic is continuing to evolve as multiple recombinants of CRF02_AG and URFs were identified in the individuals studied. CRF02_AG recombinants that contained the pol region of a primary subtype showed higher replicative advantage than other variants. Identification of drug resistant strains in drug-naïve patients suggests that these viruses are being transmitted in the population studied. Our findings support the need for continued molecular surveillance in this region of West Central Africa and investigating impact of variants on diagnostics, viral load and drug resistance assays on an ongoing basis.</p

    Comparative analysis of cell culture and prediction algorithms for phenotyping of genetically diverse HIV-1 strains from Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of entry inhibitors, monitoring of viral tropism in the clinical setting is important. Conventional methods are cell-based and lengthy, therefore V3 sequence based prediction algorithms are becoming increasingly attractive as monitoring tools. Here we report a comparative analysis of viral tropism of strains circulating in Cameroon where diverse and emerging variant strains are prevalent.</p> <p>Methods</p> <p>Viruses were isolated from 17 HIV positive individuals from three cities in Cameroon. Ghost cell lines expressing either CCR5 or CXCR4 with CD4 or CD4 alone (NIH AIDS Reagent Program) were used to determine co-receptor usage. HIV replication was determined by measuring p24 antigen levels. Plasma viral load (VL) was determined using the Versant bDNA assay. Nucleotide sequencing was performed on the V3 region and sequences were edited, aligned and translated into amino acids as described in the algorithm. Bio-informatics tools based on the 11/25 and charge rule were used to predict co-receptor usage.</p> <p>Results</p> <p>The majority of patient isolates in our study were CRF02_AG or CRF02_AG containing recombinants. Tropism of these complex viruses based on the cell culture assay was determined to be R5 in 15/17 (88.2%) patients. However, two patient isolates were dual tropic R5X4 and had drug-specific mutations. Of these two patients, one was on antiretroviral treatment with a VL of 20,899 copies/ml and the other was drug-naïve with 141,198 copies/ml. Genotype based prediction was overall in good agreement with phenotype for R5 viruses, where 93% (14/15) of results were comparable, dual tropic viruses being reported as X4 viruses by prediction.</p> <p>Conclusion</p> <p>Our results indicate that most HIV strains in Cameroon were R5 tropic and some harbored drug-resistant mutations. V3 sequence based prediction compared well with cell based assays for R5 strains and may be useful even in settings where highly diverse strains are prevalent.</p

    Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP)-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2).</p> <p>Results</p> <p>Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M) gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA) and neuraminidase (NA) genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD) of the assay was less than 100 fM for purified PCR fragments and 10<sup>3 </sup>TCID<sub>50 </sub>units for H5N1 viral RNA.</p> <p>Conclusions</p> <p>The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2). The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.</p

    Absence of Detectable XMRV and Other MLV-Related Viruses in Healthy Blood Donors in the United States

    Get PDF
    BACKGROUND: Preliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and MLV-related virus gene sequences have also been detected in 4-6% of healthy individuals including blood donors in the U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-related viruses, which is a serious public health and blood safety concern. METHODOLOGY/PRINCIPAL FINDINGS: To gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110 plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related virus. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with those from several other studies, and demonstrate the absence of XMRV or MLV-related viruses in the U.S. blood donors that we studied

    XMRV: usage of receptors and potential co-receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC) patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS). Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors.</p> <p>Methods</p> <p>To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma) cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR.</p> <p>Results</p> <p>Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP.</p> <p>Conclusion</p> <p>XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.</p

    Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing.

    Get PDF
    Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4-14 laboratories. Six non-target viruses were detected by three or more laboratories. The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    HIV-1 Induced Nuclear Factor I-B (NF-IB) Expression Negatively Regulates HIV-1 Replication through Interaction with the Long Terminal Repeat Region

    No full text
    Background: Retroviruses rely on host factors for cell entry, replication, transcription, and other major steps during their life cycle. Human Immunodeficiency Virus-1 (HIV-1) is well known for utilizing a plethora of strategies to evade the host immune response, including the establishment of latent infection within a subpopulation of susceptible cells. HIV-1 also manipulates cellular factors in latently infected cells and persists for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Results: In this study we demonstrate that Nuclear Factor-IB (NF-IB) is induced during HIV-1 infection and its expression negatively impacts viral replication. During HIV-1 infection in peripheral blood mononuclear cells (PBMCs), and the T cell line, Jurkat or during induction of virus replication in latently infected cells, ACH2 and J1.1, we observed a time-dependent alteration in NF-IB expression pattern that correlated with HIV-1 viral expression. Using the Chip assay, we observed an association of NF-IB with the long terminal repeat region of HIV-1 (LTR) (-386 to -453 nt), and this association negatively correlated with HIV-1 transcription. Furthermore, knock-down of NF-IB levels in J1.1 cells resulted in an increase of HIV-1 levels. Knock-down of NF-IB levels in J-Lat-Tat-GFP (A1), (a Jurkat cell GFP reporter model for latent HIV-1 infection) resulted in an increase in GFP levels, indicating a potential negative regulatory role of NF-IB in HIV-1 replication. Conclusion: Overall, our results suggest that NF-IB may play a role in intrinsic antiretroviral defenses against HIV-1. These observations may offer new insights into the correlation of the latently infected host cell types and HIV-1, and help to define new therapeutic approaches for triggering the switch from latency to active replication thereby eliminating HIV-1 latent infection
    corecore