236 research outputs found
Arteriolar neuropathology in cerebral microvascular disease
\ua9 2022 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society. Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making ‘cerebral angiomyopathy’ an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD
Assessing pathological changes within the nucleus ambiguus of horses with Recurrent Laryngeal Neuropathy: an extreme, length-dependent axonopathy
Equine recurrent laryngeal neuropathy (RLN) is a naturally occurring model of length‐dependent axonopathy characterised by asymmetrical degeneration of recurrent laryngeal nerve axons (RLn). Distal RLn degeneration is marked, however it is unclear whether degeneration extends to include cell bodies (consistent with a neuronopathy).
With examiners blinded to RLN severity, brainstem location and side, we examined correlations between RLN severity (assessed using left distal RLn myelinated axon count) and histopathological features (including chromatolysis and glial responses) in the nucleus ambiguus cell bodies, and myelinated axon count of the right distal RLn of 16 horses
Asymmetric Hypsarrhythmia: Clinical Electroencephalographic and Radiological Findings
Twenty-six children (16 boys and 10 girls) with hypsarrhythmia and infantile spasms (IS) were studied at the University of Michigan EEG Laboratory in a 4-year period. Six (2 boys, 4 girls), had asymmetric hypsarrhythmia with a preponderance of both slowing and epileptic form activity over one hemisphere. All 6 had the symptomatic form of IS, 4 with dysplastic conditions, 1 with porencephaly from a cerebral infarct, and 1 with hypoxic-ischemic encephalopathy. Five children had focal abnormalities on either physical examination or imaging studies. Four had the highest amplitude slowing and most epileptiform activity ipsilateral to the lesion, in 1, it was contralateral. Asymmetric hypsarrhythmia constituted 23% of cases with hypsarrhythmia examined at our EEG laboratory. The significant success in surgical therapy for some children with IS indicates the importance of identifying focal hemispheric abnormalities even if they are not apparent clinically. EEG may suggest focal changes not detected clinically or radiologically.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66439/1/j.1528-1157.1995.tb01663.x.pd
Post-mortem brain analyses of the Lothian Birth Cohort 1936:Extending lifetime cognitive and brain phenotyping to the level of the synapse
INTRODUCTION: Non-pathological, age-related cognitive decline varies markedly between individuals andplaces significant financial and emotional strain on people, their families and society as a whole.Understanding the differential age-related decline in brain function is critical not only for the development oftherapeutics to prolong cognitive health into old age, but also to gain insight into pathological ageing suchas Alzheimer’s disease. The Lothian Birth Cohort of 1936 (LBC1936) comprises a rare group of people forwhom there are childhood cognitive test scores and longitudinal cognitive data during older age, detailedstructural brain MRI, genome-wide genotyping, and a multitude of other biological, psycho-social, andepidemiological data. Synaptic integrity is a strong indicator of cognitive health in the human brain;however, until recently, it was prohibitively difficult to perform detailed analyses of synaptic and axonalstructure in human tissue sections. We have adapted a novel method of tissue preparation at autopsy toallow the study of human synapses from the LBC1936 cohort in unprecedented morphological andmolecular detail, using the high-resolution imaging techniques of array tomography and electronmicroscopy. This allows us to analyze the brain at sub-micron resolution to assess density, proteincomposition and health of synapses. Here we present data from the first donated LBC1936 brain andcompare our findings to Alzheimer’s diseased tissue to highlight the differences between healthy andpathological brain ageing. RESULTS: Our data indicates that compared to an Alzheimer’s disease patient, the cognitively normalLBC1936 participant had a remarkable degree of preservation of synaptic structures. However,morphological and molecular markers of degeneration in areas of the brain associated with cognition(prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus) were observed. CONCLUSIONS: Our novel post-mortem protocol facilitates high-resolution neuropathological analysis of the well-characterized LBC1936 cohort, extending phenotyping beyond cognition and in vivo imaging to nowinclude neuropathological changes, at the level of single synapses. This approach offers an unprecedentedopportunity to study synaptic and axonal integrity during ageing and how it contributes to differences in agerelatedcognitive change. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-015-0232-0) contains supplementary material, which is available to authorized users
New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay
Background Susceptibility-weighted imaging (SWI) is a
relatively new magnetic resonance (MR) technique that
exploits the magnetic susceptibility differences of various
tissues, such as blood, iron and calcification, as a new
source of contrast enhancement. This pictorial review is
aimed at illustrating and discussing its main clinical
applications.
Methods SWI is based on high-resolution, threedimensional
(3D), fully velocity-compensated gradientecho
sequences using both magnitude and phase images.
A phase mask obtained from the MR phase images is
multiplied with magnitude images in order to increase the
visualisation of the smaller veins and other sources of
susceptibility effects, which are displayed at best after postprocessing
of the 3D dataset with the minimal intensity
projection (minIP) algorithm.
Results SWI is very useful in detecting cerebral microbleeds
in ageing and occult low-flow vascular malformations,
in characterising brain tumours and degenerative diseases of the brain, and in recognizing calcifications in
various pathological conditions. The phase images are
especially useful in differentiating between paramagnetic
susceptibility effects of blood and diamagnetic effects of
calcium. SWI can also be used to evaluate changes in iron
content in different neurodegenerative disorders.
Conclusion SWI is useful in differentiating and characterising
diverse brain disorders
Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP
Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc) characteristics of two Dutch patients carrying novel adjacent stop codon mutations in the C-terminal part of PRNP, resulting in either case in hereditary prion protein amyloidoses, but with strikingly different clinicopathological phenotypes. The patient with the shortest disease duration (27 months) carried a Y226X mutation and showed PrP-CAA without any neurofibrillary lesions, whereas the patient with the longest disease duration (72 months) had a Q227X mutation and showed an unusual Gerstmann-Sträussler-Scheinker disease phenotype with numerous cerebral multicentric amyloid plaques and severe neurofibrillary lesions without PrP-CAA. Western blot analysis in the patient with the Q227X mutation demonstrated the presence of a 7 kDa unglycosylated PrPSc fragment truncated at both the N- and C-terminal ends. Our observations expand the spectrum of clinicopathological phenotypes associated with PRNP mutations and show that a single tyrosine residue difference in the PrP C-terminus may significantly affect the site of amyloid deposition and the overall phenotypic expression of the prion disease. Furthermore, it confirms that the absence of the glycosylphosphatidylinositol anchor in PrP predisposes to amyloid plaque formation
Astrocytes: biology and pathology
Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions
Amyloid Triggers Extensive Cerebral Angiogenesis Causing Blood Brain Barrier Permeability and Hypervascularity in Alzheimer's Disease
Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the “Vascular hypothesis”, holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration
Post-mortem assessment in vascular dementia: advances and aspirations.
BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses
Recommended from our members
Universal DNA methylation age across mammalian tissues.
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals
- …