26 research outputs found

    Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin

    Get PDF
    International audienceFrom the Neoproterozoic to the early Paleozoic, the northern Gondwana margin was sequentially shaped by the Cadomian accretionary and the Variscan collisional orogens which offers the opportunity to investigate the relative extent of crust production/reworking in both geodynamic settings. In the eastern part of the Variscan French Massif Central (FMC), the Velay Orthogneiss Formation (VOF) represents a consistent lithological unit of the pre-Variscan basement and comprises augen gneisses and leucogneisses. Such rocks constitute a unique record of the pre-Variscan magmatic history and bear critical information on the crustal evolution of the northern Gondwana margin.Here, we present whole–rock major and trace element compositions indicating that: (i) the VOF shows a remarkable geochemical homogeneity; (ii) the protolith of the augen gneisses corresponds to strongly peraluminous, “S-type” porphyritic granites originating from partial melting of an Ediacaran sedimentary sequence; (iii) the leucogneisses are former leucogranites generated by fractionation of the magma at the origin of the porphyritic granites; and (iv) the whole suite emplaced at shallow crustal levels (< 7 km). U–Pb LA–(MC–)ICP–MS analyses on zircon yielded similar emplacement ages of c. 542 Ma and a narrow range of ΔHf(t) clustering around 0 for the protoliths of both augen and leucogneisses. This homogeneous Hf isotope signature, notably uncommon for S-type granites, would originate from a sequential process of: (i) inherited zircon dissolution during melting and ascent in the crust due to Zr-undersaturated conditions, (ii) isotopic homogenization of the melt by advection and elemental/isotopic diffusion, followed by (iii) early saturation upon emplacement owing to rapid cooling at shallow crustal levels.We propose that partial melting of Ediacaran sediments occurred during inversion of a Cadomian back-arc basin and was promoted by the high thermal gradient typical of thinned crust domains. Therefore, the VOF and other Cadomian S-type granitoids from the northern Gondwana margin are indicative of substantial crust reworking away from any proper continental collision zone

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≄60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Différenciation et stabilisation de la croûte continentale archéenne, l'exemple de la marge Nord du craton du Kaapvaal en Afrique du Sud

    No full text
    The PhD work presented in this manuscript focuses on the recognition and the manifestation of Archean crustal differentiation processes. The Archean eon which represents 1/3 of the geological record is featured by both lithologies unrecognized in younger eons and cryptic geodynamics. Most of investigations concentrate on the characterisation of aluminium-rich lithologies that allow an accurate determination of the pressure-temperature evolution underwent by crustal materials during crustal thickening geodynamics. However, aluminium-rich lithologies - mainly represented by metasediments - account for only 10% on average of Archean terranes whereas orthoderived gneisses - which also testify for crustal differentiation processes - form around 75% of these terranes. The following contribution depicts an Archean composite grey gneiss complex located at the northern edge of the Kaapvaal craton is South Africa. Results carried out during this PhD study have major consequences on Archean geodynamics. The zircon U-Pb/Lu-Hf isotope Investigation coupled with strong petro-metamorphic observations show that composite grey gneiss complexes may be built over a protracted time span, achieved through self-refinement of crustal materials, i.e. the crustal block evolved in a thermodynamically closed system. Grey gneiss compiexes are only moderately investigated even though information enclosed in these lithologies is complementary with those from aluminium-rich rocks. Therefore, deeper investigations of these geological objects must be a central scope in order to improve the knowledge of the Archean eon and appears necessary for the building of even more realistic geotectonic modelsLe travail de thĂšse reportĂ© dans ce manuscrit se focalise sur la reconnaissance ainsi que l'expression des processus de diffĂ©renciation crustale Ă  l'ArchĂ©en. Cet Ă©on reprĂ©sente Ă  lui tout seul 1/3 des temps gĂ©ologiques, et se caractĂ©rise notamment par des lithologies diagnostiques, ainsi que des contextes gĂ©odynamiques complexes. La majoritĂ© des Ă©tudes sont portĂ©es sur l’investigation des phases alumineuses qui permettent de contraindre prĂ©cisĂ©ment les Ă©vĂ©nements mĂ©tamorphiques au-cours d’une gĂ©odynamique d’épaississement crustal. Toutefois, ces phases alumineuses reprĂ©sentent rarement plus de 10% des terrains archĂ©ens, alors qu’ils sont faits Ă  plus de 75% de gneiss orthodĂ©rivĂ©s. L'Ă©tude qui suit est une caractĂ©risation du complexe de gneiss gris composite de la marge Nord du craton archĂ©en du Kaapvaal en Afrique du Sud. Les rĂ©sultats produits durant cette investigation ont amenĂ© Ă  plusieurs conclusions importantes au regard de la gĂ©odynamique archĂ©enne. L'Ă©tude isotopique U-Pb/Lu-Hf sur zircon couplĂ©e Ă  des analyses pĂ©tro-mĂ©tamorphiques montre que la construction d’un complexe de gneiss gris composite correspond Ă  une gĂ©odynamique prolongĂ©e dans le temps, accomplie au-travers de processus de diffĂ©renciations crustales internes Ă  la Zone accrĂ©tĂ©e, 1.e. le bloc crustal Ă©volue en systĂšme thermodynamiquement fermĂ©. Les complexes de gneiss gris ne sont que modĂ©rĂ©ment Ă©tudiĂ©s toutefois, les informations contenues dans ces lithologies apparaissent complĂ©mentaires avec celles obtenues par les Ă©tudes mĂ©tamorphiques sur les lithologies alumineuses. Il est donc nĂ©cessaire d'approfondir ce type d’investigations afin de mieux contraindre les modĂšles gĂ©odynamiques archĂ©en

    Differentiation and stabilisation of the Archean continental crust, the example of the northern edge of the Kaapvaal craton, South Africa

    No full text
    Thesis (PhD)--Stellenbosch University, 2017.ENGLISH ABSTRACT: The Earth is one of the only solid celestial bodies displaying, at present day, an internal activity significant enough to modify its surface. This activity is mostly pictured by plate tectonic motions, which triggers the magmatic activity of mid-ocean ridges as well as subduction zones and mountain ranges development. These geodynamics are the locus of the creation of the oceanic crust, the continental crust and the reworking of older crustal material respectively that deeply modify both physical and chemical properties of the Earth’s lithosphere. One of the main consequences of these processes is the chemical layering of the continental crust, composed of granodioritic to granitic upper levels while lower crustal levels are more mafic. Two crustal processes are assumed to be responsible for such a structure: (i) the crustal growth taking place at subduction zones and (ii) the crustal differentiation taking place within collision and accretionary orogens. The PhD work presented in this manuscript focuses on the recognition and the manifestation of Archean crustal differentiation processes. The Archean eon which represents 1/3 of the geological record is featured by both lithologies unrecognized in younger eons and cryptic geodynamics. Most of investigations concentrate on the characterisation of aluminium-rich lithologies that allow an accurate determination of the pressure-temperature evolution underwent by crustal materials during crustal thickening geodynamics. However, aluminium-rich lithologies - mainly represented by metasediments - account for only 10 % on average of Archean terranes whereas orthoderived gneisses (TTG + granite) - which also testify for crustal differentiation processes - form around 75 % of these terranes. The following contribution depicts an Archean composite grey gneiss complex located at the northern edge of the Kaapvaal craton is South Africa. Results carried out during this PhD study have major consequences on Archean geodynamics. Firstly, the Uranium-Lead isotope study of zircon grains from igneous lithologies of the northern Kaapvaal craton indicates an uninterrupted recording from ca. 2.97 Ga to ca. 2.68 Ga, namely during more than 300 Ma (which is the time that separates the Carboniferous/Permian transition from present day). This protracted recording sheds light on Archean tectonics and questions the ways and means of such geodynamics. Our isotope investigation, associated with field investigation and whole rock major and trace elements chemistry, are assumed to picture accretionary orogen geodynamics that contribute to a moderated crustal thickening. Secondly, the Lutetium-Hafnium isotope signature of the same zircon grains displays unprecedented results. Our analyses indicate that igneous lithologies from the northern Kaapvaal craton evolve on a single crustal trend through time. This is interpreted as the absence of exotic material involved in the accretionary orogen, i.e. the crustal block evolved in a thermodynamically closed system. It is therefore crucial to monitor the evolution of the grey gneiss complex forming phases through time. Geochemical analyses of dated phases show a noteworthy sequence of events with: . Emplacement of a basic complex (produced by partial melting of a depleted mantle) at ca. 2.97 Ga, which is subsequently partially melted, implying the, . Production and emplacement of TTGs during 100 Ma, from ca. 2.95 Ga to ca. 2.85 Ga, themselves subsequently differentiated into, . Granites which intrude the continental crust from ca. 2.85 Ga to ca. 2.75 Ga. These geodynamics are also marked by the emplacement of greenstone belts and associated sedimentary basins. The burying of supracrustal lithologies is recognized while ongoing accretionary orogen, however, no partial melting feature is described. After the intrusion of granites at ca. 2.85-2.75 Ga, partial melting reactions are recognized within supracrustal formations. Therefore, this study aims to demonstrate the key role of a rheologically strong granitic crust for the onset of an efficient burying process. Finally, the burying of supracrustal formations towards lower crustal levels triggers mantle metasomatism, ensued partial melting, production of mantle derived granite and therefore stabilisation of the entire crustal block. The PhD work presented here shed light on the Archean tectonics. This eon is perceived as a time where geodynamics were faster than present day due to a hotter and thus a more active Earth. Nevertheless, our results show that composite grey gneiss complexes may be built over a protracted time span, achieved through self-refinement of crustal materials. Grey gneiss complexes are only moderately investigated even though information enclosed in these lithologies is complementary with those from aluminium-rich rocks. Therefore, deeper investigations of these geological objects must be a central scope in order to improve the knowledge of the Archean eon and appears necessary for the building of even more realistic geotectonic models.AFRIKAANSE OPSOMMING: Die Aarde is een van die enigste solide hemelliggame wat huidig ‘n interne aktiwiteit beduidend genoeg toon om sy oppervlak te verander. Hierdie aktiwiteit word meestal voorgestel deur tektoniese plaat bewegings wat die magmatiese aktiwiteit van mid-oseaanrĂ»e sowel as subduksiesones en bergreeks ontwikkeling veroorsaak. Hierdie geodinamika is die lokus van die skepping van die oseaankors, die kontinentale kors en die herwerking van ouer korsmateriaal onderskeidelik, wat beide die fisiese en chemiese eienskappe van die Aarde se litosfeer hoogs modifiseer. Een van die hoof gevolge van hierdie prosesse is die chemiese gelaagdheid van die kontinentale kors wat granodiorities tot granities in die boonste korsvlakke is terwyl die laer korsvlakke meer mafies is. Twee korsprosesse word aangeneem om verantwoordelik te wees vir so ‘n struktuur: (i) die korsgroei wat plaasvind in subduksiesones en (ii) die korsdifferensiasie wat plaasvind binne-in botsende en akkresie orogene. Die PhD werk wat aangebied word in hierdie manuskrip fokus op die herkenning en die manifestasie van ArgeĂŻese korsdifferensiasie prosesse. Die ArgeĂŻkum eon wat ‘n derde van die geologiese rekord verteenwoordig word gekenmerk deur litologieĂ« beide onherkenbaar in jonger eone en kriptiese geodinamika. Meeste van die ondersoeke konsentreer op die karakterisering van aluminium-ryke litologieĂ« wat die akkurate bepaling van die druk-temperatuur evolusie toelaat wat deur die korsmateriaal ervaar is tydens korsverdikkings geodinamika. Alhoewel, aluminium-ryke litologieĂ« – hoofsaaklik verteenwoordig deur metasedimente – verantwoordelik is vir net 10 % gemiddeld van ArgeĂŻese terreine terwyl orto-afgeleide gneise (TTG + graniet) – wat ook getuig van korsdifferensiasie prosesse – vorm rondom 75 % van hierdie terreine. Die volgende bydra beeld ‘n ArgeĂŻese saamgestelde grys gneiskompleks uit wat aan die noordelike rand van die Kaapvaal kraton in Suid-Afrika geleĂ« is. Resultate verkry gedurende die uitvoering van hierdie PhD studie het groot gevolge op ArgeĂŻese geodinamika. Eerstens, die Uraan-Lood isotoop studie van sirkoonkorrels vanaf stollingslitologieĂ« van die noordelike Kaapvaal kraton dui ‘n ononderbroke opname van ca. 2.97 Ga tot ca. 2.68 Ga aan, naamlik gedurende meer as 300 Ma (wat die tydperk is wat die Karboon/Permium oorgang van hedendaagse tyd skei). Hierdie verlengde opname werp lig op ArgeĂŻese tektonika en bevraagteken die wyses van sulke geodinamika. Ons isotoopondersoek, geassosieĂ«r met veldondersoek en heelrots hoof- en spoorelement chemie, word aangeneem om deur akkresie orogeen geodinamika bereik te word en sodoende by te dra aan matige korsverdikking. Tweedens, die Lutesium-Hafnium isotoop karakteristiek van dieselfde sirkoonkorrels vertoon ongekende resultate. Ons analises dui aan dat stollings litologieĂ« van die noordelike Kaapvaal kraton evoleer op ‘n enkele korstendens deur tyd. Dit word interpreteer as die afwesigheid van eksotiese materiaal betrokke in die akkresie orogeen., m.a.w. die korsblok het evoleer in ‘n termodinamiese geslote stelsel. Dit is dus noodsaaklik om die evolusie van die grys gneiskompleks wat fases deur tyd vorm te monitor. Geochemiese analises van gedateerde fases wys ‘n opmerklike opeenvolging van gebeurtenisse met: . Inplasing van ‘n basis kompleks (geproduseer deur gedeeltelike smelting van ‘n uitgeputte mantel) teen ca. 2.97 Ga, wat daarna gedeeltelik gesmelt word wat impliseer dat, . Produksie en inplasing van TTGs gedurende 100 Ma, vanaf ca. 2.95 Ga tot ca. 2.85 Ga, hulself daarna gedifferensieĂ«r in, . Graniete wat die kontinentale kors indring vanaf ca. 2.85 Ga tot ca. 2.75 Ga. Hierdie geodinamika word ook gemerk deur die inplasing van groensteenstroke en geassosieerde sedimentĂȘre komme. Die begrawing van suprakorslitologieĂ« word erken alhoewel daar geen gedeeltelike smelting kenmerke vir deurlopende akkresie orogene beskryf is nie. Na die indringing van graniete teen ca. 2.85-2.75 Ga, word gedeeltelike smeltingsreaksies erken in suprakorsformasies. Dus, beoog hierdie studie om die sleutelrol van ‘n reologiese sterk granitiese kors om die aanvang van ‘n doeltreffende begrawingsproses te demonstreer. Uiteindelik sal die begrawing van suprakors formasies na die laer vlakke van die kors mantel metasomatisme veroorsaak, gevolg deur gedeeltelike smelting, produksie van mantelafgeleide graniet en dus stabilisering van die hele korsblok. Die PhD werk wat hierin aangebied is werp lig op die ArgeĂŻese tektonika. Hierdie eon word beskou as ‘n tyd waar geodinamika vinniger was as vandag as gevolg van ‘n warmer en dus ‘n meer aktiewe Aarde. Nietemin, ons resultate wys dat saamgestelde grys gneiskomplekse gevorm kan word oor ‘n verlengde tydperk, bereik deur self-verfyning van korsmateriaal. Grys gneiskomplekse is net matig ondersoek alhoewel informasie bevat in hierdie litologieĂ« die informasie van aluminium-ryke gesteentes komplimenteer. Dus moet dieper ondersoeke van hierdie geologiese voorwerpe die sentrale punt wees in orde om kennis van die ArgeĂŻkum eon te verbeter en blyk dit ook noodsaaklik vir die bou van selfs meer realistiese geotektoniese modelle.FRENCH RESUME: La planĂšte Terre est l’un des rares corps cĂ©leste solide connu qui possĂšde prĂ©sentement une activitĂ© interne suffisamment importante pour en modifier sa surface. Cette activitĂ© s’observe principalement au sein de l’écorce terrestre par le biais des mouvements des plaques tectoniques qui induisent l’activitĂ© magmatique des dorsales mĂ©dio-ocĂ©aniques, les zones de subduction ainsi que les chaĂźnes orogĂ©niques. Ces diffĂ©rentes gĂ©odynamiques sont le thĂ©Ăątre de processus de crĂ©ation de croĂ»te ocĂ©anique (dorsales), continentale (zone de subduction) mais aussi de remaniement de croĂ»te antĂ©rieure (zones de collisions/accrĂ©tion) et modifient en profondeur les propriĂ©tĂ©s physico-chimiques de la lithosphĂšre. Il en rĂ©sulte une stratification de la croĂ»te continentale terrestre, marquĂ©e par une croĂ»te supĂ©rieure granodioritique Ă  granitique - donc chimiquement acide - et une croĂ»te infĂ©rieure plus riche en phases ferromagnĂ©siennes, chimiquement basique Ă  intermĂ©diaire. Deux processus amĂšnent Ă  ce type de configuration : (i) la croissance crustale se dĂ©roulant dans les zones de subduction et (ii) la diffĂ©renciation crustale se dĂ©roulant dans les zones de collision/accrĂ©tion. Le travail de thĂšse reportĂ© dans ce manuscrit se focalise sur la reconnaissance ainsi que l’expression des processus de diffĂ©renciation crustale Ă  l’ArchĂ©en. Cet Ă©on reprĂ©sente Ă  lui tout seul 1/3 des temps gĂ©ologiques, et se caractĂ©rise notamment par des lithologies diagnostiques, ainsi que des contextes gĂ©odynamiques complexes. La majoritĂ© des Ă©tudes sont portĂ©es sur l’investigation des phases alumineuses qui permettent de contraindre prĂ©cisĂ©ment les divers Ă©vĂ©nements mĂ©tamorphiques au cours d’une gĂ©odynamique d’épaississement crustal. Toutefois, ces phases alumineuses - incarnĂ©es principalement par les mĂ©ta-sĂ©diments - reprĂ©sentent rarement plus de 10 % des terrains archĂ©ens, alors qu’ils sont faits Ă  plus de 75 % de gneiss orthodĂ©rivĂ©s (TTG + granite), tĂ©moignant eux aussi des processus de diffĂ©renciation crustale. L’étude qui suit est une caractĂ©risation du complexe de gneiss gris composite de la marge Nord du craton archĂ©en du Kaapvaal en Afrique du Sud. Les rĂ©sultats produits durant cette investigation ont amenĂ© Ă  plusieurs conclusions importantes au regard de la gĂ©odynamique archĂ©enne. Tout d’abord, l’étude isotopique Uranium-Plomb des zircons provenant des lithologies magmatique du Nord-Kaapvaal montre un enregistrement continu de ca. 2.97 Ga Ă  ca. 2.68 Ga, soit sur une pĂ©riode de plus de 300 Ma, correspondant Ă  la durĂ©e qui sĂ©pare la transition CarbonifĂšre/Permien de l’actuel. Un tel enregistrement prolongĂ© dans le temps, jamais dĂ©crit auparavant, apporte une nouvelle optique sur la tectonique archĂ©enne. En effet, cela pose la question des modalitĂ©s de la durĂ©e d’une telle gĂ©odynamique. Les rĂ©sultats isotopiques, couplĂ©s aux donnĂ©es recueillies sur le terrain ainsi qu’aux analyses gĂ©ochimiques, sont interprĂ©tĂ©s comme issus d’une gĂ©odynamique d’orogenĂšse d’accrĂ©tion qui a permis un Ă©paississement modĂ©rĂ© de la croĂ»te continentale archĂ©enne durant une pĂ©riode prolongĂ©e. De plus, l’analyse isotopique du couple LutĂ©tium-Hafnium sur ces mĂȘmes grains de zircon a montrĂ© un rĂ©sultat, lĂ  aussi, jamais dĂ©crit auparavant. Ces analyses indiquent que l’ensemble des lithologies magmatiques prĂ©sentes sur la marge Nord du craton du Kaapvaal progressent sur une unique direction d’évolution crustale au-cours du temps. Ce rĂ©sultat est interprĂ©tĂ© comme attestant de l’absence de phase allochtone impliquĂ©e dans les processus de diffĂ©renciation crustale, i.e. l’orogenĂšse Ă©volue en systĂšme thermodynamiquement fermĂ©. Il apparaĂźt alors important de tracer l’évolution dans le temps des diffĂ©rentes phases qui constituent le complexe de gneiss gris Ă©tudiĂ©. Les analyses gĂ©ochimiques des diffĂ©rentes phases datĂ©es du complexe de gneiss gris ont montrĂ© une sĂ©quence assez remarquable avec notamment : . La formation d’un complexe basique Ă  2.97 Ga produit par fusion partielle d’un manteau appauvri, qui subit un Ă©pisode de fusion partielle amenant Ă , . La mise en place de granitoĂŻdes Ă  signature gĂ©ochimique TTG entre ca. 2.95 Ga et ca. 2.85 Ga, qui eux-mĂȘmes subissent un Ă©pisode de fusion partielle permettant la formation de, . Granites intrusifs mis en place sur la pĂ©riode ca. 2.85 - ca. 2.75 Ga. Cette gĂ©odynamique est aussi marquĂ©e par la mise en place de ceintures de roches vertes et de bassins sĂ©dimentaires associĂ©s. Ces formations supracrustales sont enfouies durant l’orogenĂšse, mais pas suffisamment pour atteindre les conditions de fusion partielle. Cette configuration est modifiĂ©e aprĂšs l’intrusion des granites sur la pĂ©riode 2.85-2.75 Ga, oĂč des Ă©pisodes de fusion partielle sont observĂ©s au sein les formations supracrustales. Cette Ă©tude tend donc Ă  dĂ©montrer que l’intrusion de granite diffĂ©renciĂ© dans la croĂ»te continentale est l’élĂ©ment clĂ© dans l’établissement de processus de remaniement par fusion partielle des lithologies surfaciques. Enfin, l’enfouissement des formations supracrustales a permis la mĂ©tasomatome du manteau sous continental, amenant Ă  la fusion partielle de ce dernier et donc Ă  la cratonisation de l’ensemble du bloc continental. Ce travail apporte donc une nouvelle vision de la tectonique archĂ©enne. En effet, l’ArchĂ©en est souvent perçu comme une pĂ©riode durant laquelle les processus gĂ©odynamiques sont rapides du fait d’une Terre plus chaude et donc plus active qu’à l’actuel. Or, l’étude rĂ©alisĂ©e au-cours de ce projet de thĂšse montre que la construction d’un complexe de gneiss gris composite correspond Ă  une gĂ©odynamique prolongĂ©e dans le temps, accomplie au-travers de processus de diffĂ©renciations crustales internes Ă  la zone accrĂ©tĂ©e. Les complexes de gneiss gris ne sont que modĂ©rĂ©ment Ă©tudiĂ©s, toutefois, les informations contenues dans ces lithologies sont complĂ©mentaires avec celles obtenues par les Ă©tudes mĂ©tamorphiques sur les lithologies alumineuses. Il est donc nĂ©cessaire d’approfondir les investigations sur ces corps afin de mieux comprendre les modalitĂ©s de mise en place des lithologies orthodĂ©rivĂ©es archĂ©enne et construire des modĂšles gĂ©odynamiques les plus proches de la rĂ©alitĂ©

    Differentiation and stabilisation of the Archean continental crust, example based on the northern edge of the Kaapval craton in South Africa

    No full text
    Le travail de thĂšse reportĂ© dans ce manuscrit se focalise sur la reconnaissance ainsi que l'expression des processus de diffĂ©renciation crustale Ă  l'ArchĂ©en. Cet Ă©on reprĂ©sente Ă  lui tout seul 1/3 des temps gĂ©ologiques, et se caractĂ©rise notamment par des lithologies diagnostiques, ainsi que des contextes gĂ©odynamiques complexes. La majoritĂ© des Ă©tudes sont portĂ©es sur l’investigation des phases alumineuses qui permettent de contraindre prĂ©cisĂ©ment les Ă©vĂ©nements mĂ©tamorphiques au-cours d’une gĂ©odynamique d’épaississement crustal. Toutefois, ces phases alumineuses reprĂ©sentent rarement plus de 10% des terrains archĂ©ens, alors qu’ils sont faits Ă  plus de 75% de gneiss orthodĂ©rivĂ©s. L'Ă©tude qui suit est une caractĂ©risation du complexe de gneiss gris composite de la marge Nord du craton archĂ©en du Kaapvaal en Afrique du Sud. Les rĂ©sultats produits durant cette investigation ont amenĂ© Ă  plusieurs conclusions importantes au regard de la gĂ©odynamique archĂ©enne. L'Ă©tude isotopique U-Pb/Lu-Hf sur zircon couplĂ©e Ă  des analyses pĂ©tro-mĂ©tamorphiques montre que la construction d’un complexe de gneiss gris composite correspond Ă  une gĂ©odynamique prolongĂ©e dans le temps, accomplie au-travers de processus de diffĂ©renciations crustales internes Ă  la Zone accrĂ©tĂ©e, 1.e. le bloc crustal Ă©volue en systĂšme thermodynamiquement fermĂ©. Les complexes de gneiss gris ne sont que modĂ©rĂ©ment Ă©tudiĂ©s toutefois, les informations contenues dans ces lithologies apparaissent complĂ©mentaires avec celles obtenues par les Ă©tudes mĂ©tamorphiques sur les lithologies alumineuses. Il est donc nĂ©cessaire d'approfondir ce type d’investigations afin de mieux contraindre les modĂšles gĂ©odynamiques archĂ©ensThe PhD work presented in this manuscript focuses on the recognition and the manifestation of Archean crustal differentiation processes. The Archean eon which represents 1/3 of the geological record is featured by both lithologies unrecognized in younger eons and cryptic geodynamics. Most of investigations concentrate on the characterisation of aluminium-rich lithologies that allow an accurate determination of the pressure-temperature evolution underwent by crustal materials during crustal thickening geodynamics. However, aluminium-rich lithologies - mainly represented by metasediments - account for only 10% on average of Archean terranes whereas orthoderived gneisses - which also testify for crustal differentiation processes - form around 75% of these terranes. The following contribution depicts an Archean composite grey gneiss complex located at the northern edge of the Kaapvaal craton is South Africa. Results carried out during this PhD study have major consequences on Archean geodynamics. The zircon U-Pb/Lu-Hf isotope Investigation coupled with strong petro-metamorphic observations show that composite grey gneiss complexes may be built over a protracted time span, achieved through self-refinement of crustal materials, i.e. the crustal block evolved in a thermodynamically closed system. Grey gneiss compiexes are only moderately investigated even though information enclosed in these lithologies is complementary with those from aluminium-rich rocks. Therefore, deeper investigations of these geological objects must be a central scope in order to improve the knowledge of the Archean eon and appears necessary for the building of even more realistic geotectonic model

    Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland

    No full text
    International audienceIn the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (ÎŽ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; ÎŽ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (ÎŽ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of ~ 0.2 Ga (Xjuv from juv ~ 40%; ÎŽ18O: 5-10.5‰). Rates and durations obtained for seafloor spreading (175 ± 25 Ma), subduction (125 ± 75 Ma) and continental collision (ca. 60 Ma) are similar to those observed in Phanerozoic Wilson Cycle but differ from what was estimated for Archean terrains. Therefore, timespans of the different steps of a Wilson cycle might have progressively changed over time as a response to the progressive cratonization of the lithosphere. REE elements in metamafic rocks and Analytical method

    2D imaging X-ray spectrometer on WEST : results and technical challenges

    No full text
    International audienceA new imaging X-Ray spectrometer has been installed, aligned and used on the WEST tokamak. A typical experimental spectrum is presented for each of the 3 interchangeable crystals, measuring respectively the Ar XVII, Ar XVIII and Fe XXV spectra. The instrument function exhibits a distortion for the Ar XVII spectrum, presumably due to the crystal splitting in 2 stripes and non-parallelism of the crystal layers. The Ar XVII and Ar XVIII spectra also display blends of unidentified spectral lines, presumably W line

    Diachronous Redistribution of Hf and Nd Isotopes at the Crystal Scale—Consequences for the Isotopic Evolution of a Poly-Metamorphic Crustal Terrane

    No full text
    International audienceIn metamorphic rocks, mineral species react over a range of pressure–temperature conditions that do not necessarily overlap. Mineral equilibration can occur at varied points along the metamorphic pressure–temperature (PT) path, and thus at different times. The sole or dominant use of zircon isotopic compositions to constrain the evolution of metamorphic rocks might then inadvertently skew geological interpretations towards one aspect or one moment of a rock’s history. Here, we present in-situ U–Pb/Sm–Nd isotope analyses of the apatite crystals extracted from two meta-igneous rocks exposed in the Saglek Block (North Atlantic craton, Canada), an Archean metamorphic terrane, with the aim of examining the various signatures and events that they record. The data are combined with published U–Pb/Hf/O isotope compositions of zircon extracted from the same hand-specimens. We found an offset of nearly ca. 1.5 Gyr between U-Pb ages derived from the oldest zircon cores and apatite U–Pb/Sm–Nd isotopic ages, and an offset of ca. 200 Ma between the youngest zircon metamorphic overgrowths and apatite. These differences in metamorphic ages recorded by zircon and apatite mean that the redistribution of Hf isotopes (largely hosted in zircon) and Nd isotopes (largely hosted in apatite within these rocks), were not synchronous at the hand-specimen scale (≀~0.001 m3). We propose that the diachronous redistribution of Hf and Nd isotopes and their parent isotopes was caused by the different PT conditions of growth equilibration between zircon and apatite during metamorphism. These findings document the latest metamorphic evolution of the Saglek Block, highlighting the role played by intra-crustal reworking during the late-Archean regional metamorphic event
    corecore