43 research outputs found
Specification of an extensible and portable file format for electronic structure and crystallographic data
In order to allow different software applications, in constant evolution, to
interact and exchange data, flexible file formats are needed. A file format
specification for different types of content has been elaborated to allow
communication of data for the software developed within the European Network of
Excellence "NANOQUANTA", focusing on first-principles calculations of materials
and nanosystems. It might be used by other software as well, and is described
here in detail. The format relies on the NetCDF binary input/output library,
already used in many different scientific communities, that provides
flexibility as well as portability accross languages and platforms. Thanks to
NetCDF, the content can be accessed by keywords, ensuring the file format is
extensible and backward compatible
The CECAM Electronic Structure Library and the modular software development paradigm
First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been quite successful for decades. The rapid progress in methodology, however, has resulted in an ever increasing complexity of those programs, which implies a growing amount of replication in coding and in the recurrent re-engineering needed to adapt to evolving hardware architecture. The Electronic Structure Library (\esl) was initiated by CECAM (European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure programs and redesign them as free, open-source libraries. They include ``heavy-duty'' ones with a high degree of parallelisation, and potential for adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by scientists when implementing new ideas. It is a community effort, undertaken by developers of various successful codes, now facing the challenges arising in the new model. This modular paradigm will improve overall coding efficiency and enable specialists (computer scientists or computational scientists) to use their skills more effectively. It will lead to a more sustainable and dynamic evolution of software as well as lower barriers to entry for new developers
Siesta: Recent developments and applications
A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta?s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin?orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.SIESTA development was historically supported by different Spanish National Plan projects (Project Nos. MEC-DGES-PB95-0202, MCyT-BFM2000-1312, MEC-BFM2003-03372, FIS2006-12117, FIS2009-12721, FIS2012-37549, FIS2015-64886-P, and RTC-2016-5681-7), the latter one together with Simune Atomistics Ltd. We are thankful for financial support from the Spanish Ministry of Science, Innovation and Universities through Grant No. PGC2018-096955-
Inhibition of the inositol kinase Itpkb augments calcium signaling in lymphocytes and reveals a novel strategy to treat autoimmune disease
Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease
Sharing electronic structure and crystallographic data with ETSF_IO
We present a library of routines whose main goal is to read and write exchangeable files (NetCDF file format) storing electronic structure and crystallographic information. It is based on the specification agreed inside the European Theoretical Spectroscopy Facility (ETSF). Accordingly, this library is nicknamed ETSF_IO. The purpose of this article is to give both an overview of the ETSF_IO library and a closer look at its usage. ETSF_IO is designed to be robust and easy to use, close to Fortran read and write routines. To facilitate its adoption, a complete documentation of the input and output arguments of the routines is available in the package, as well as six tutorials explaining in detail various possible uses of the library routines
Molecular cloning and characterization of the mouse P2Y4 nucleotide receptor.
To isolate the mouse P2Y4 receptor gene, a mouse genomic library was screened with a human P2Y4 probe. An open reading frame encoding a protein of 361 amino acids was isolated. This protein showed 82% and 95% amino acid identity with the human and rat P2Y4 receptors, respectively. By reverse transcription and polymerase chain reaction (RT-PCR), the P2Y4 messenger RNA was detected in mouse liver, intestine, stomach, bladder and lung among the 16 mouse tissues tested. In 1321N1 transfected cells, the mouse P2Y4 receptor was equally activated by UTP and ATP, and was antagonized by pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and Reactive Blue 2, and not by suramin. Moreover, when expressed in 1321N1 cells, the rat P2Y4 is also antagonized by PPADS. Thus, when compared in the same expression system, the mouse P2Y4 is closer to the rat ortholog in terms of agonist stimulation, while in terms of antagonist profile, the three P2Y4 receptor orthologs are similar.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C
info:eu-repo/semantics/publishe