42 research outputs found

    Rainfall recharge thresholds in a subtropical climate determined using a regional cave drip water monitoring network

    Get PDF
    Quantifying the combination of climatic and hydrological conditions required to generate groundwater recharge is challenging, yet of fundamental importance for groundwater resource management. Here we demonstrate a new unsaturated zone physical method of determining rainfall-recharge thresholds in karst using a regional cave drip water monitoring network. For limestones of the Upper and Lower Macleay Valley, eastern Australia, set in a subtropical climate, we observe thirty-one cave drip water recharge events over a five-year monitoring period. Comparison to antecedent precipitation demonstrates a median observed recharge threshold of 76 mm/week precipitation (Lower Macleay) and 79 mm/week precipitation (Upper Macleay), with lower precipitation thresholds (down to 30 mm/week) possible. We use a simple water budget model to quantify soil and epikarst water storage volumes and to test hypotheses of the hydrological controls. Modelled soil and epikarst water storage capacities of about 65 mm (Lower Macleay) and 80 mm (Upper Macleay) confirm a correspondence between observed weekly precipitation thresholds and soil and epikarst capacities. However, discrepancies between observed and simulated recharge events helps elucidate the likely recharge processes including focussed recharge bypassing the soil and epikarst store, overflow and drainage between multiple karst stores, and tree water use from depth. Our observed recharge thresholds and modelled soil and epikarst storage capacities are comparable to recharge thresholds estimated across a range of water-limited environments globally. The method is readily applicable to any karst region where drip loggers can be installed in a cave system in close proximity to surface climate data

    Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia

    Get PDF
    Dryland regions are generally projected to become drier under future climate change scenarios. Understanding the long-term natural variability of dryland regions via paleo-reconstructions is therefore highly desirable. The δ18O of two coeval modern speleothems from Cathedral Cave, Wellington, in semi-arid SE Australia are compared to the instrumental record to assess its efficacy as a proxy of past hydrological variability. Stalagmite δ18O was modulated by the frequency of recharge events and epikarst evaporation of storage water. Prolonged intervals between recharge events, such as droughts, resulted in higher stalagmite δ18O. Conversely, periods with more frequent recharge events and a positive water balance, resulted in lower δ18O. Disequilibrium cave processes are likely to be enhanced during dry conditions, although it is argued that these will modulate δ18Ospel in the same direction as epikarst evaporation, effectively amplifying the response of δ18Ospel. Extreme events, such as floods and droughts, were also captured in the stalagmite records, although potentially with a lag of several years. We verify that modern speleothems from semi-arid regions can be used to reconstruct hydroclimate due to variations in δ18Ospel modulated by karst processes. Such records are archives of past changes in recharge rather than precipitation amount or surface temperature, as is commonly applied to speleothem records from non-water-limited regions

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    Semi-arid zone caves:Evaporation and hydrological controls on δ<sup>18</sup>O drip water composition and implications for speleothem paleoclimate reconstructions

    Get PDF
    Oxygen isotope ratios in speleothems may be affected by external processes that are independent of climate, such as karst hydrology and kinetic fractionation. Consequently, there has been a shift towards characterising and understanding these processes through cave monitoring studies, particularly focussing on temperate zones where precipitation exceeds evapotranspiration. Here, we investigate oxygen isotope systematics at Wellington Caves in semi-arid, SE Australia, where evapotranspiration exceeds precipitation. We use a novel D2O isotopic tracer in a series of artificial irrigations, supplemented by pre-irrigation data comprised four years of drip monitoring and three years of stable isotope analysis of both drip waters and rainfall. This study reveals that: (1) evaporative processes in the unsaturated zone dominate the isotopic composition of drip waters; (2) significant soil zone ‘wetting up’ is required to overcome soil moisture deficits in order to achieve infiltration, which is highly dependent on antecedent hydro-climatic conditions; (3) lateral flow, preferential flow and sorption in the soil zone are important in redistributing subsurface zone water; (4) isotopic breakthrough curves suggest clear evidence of piston-flow at some drip sites where an older front of water discharged prior to artificial irrigation water; and (5) water residence times in a shallow vadose zone (<2 m) are highly variable and can exceed six months. Oxygen isotope speleothem records from semi-arid regions are therefore more likely to contain archives of alternating paleo-aridity and paleo-recharge, rather than paleo-rainfall e.g. the amount effect or mean annual. Speleothem-forming drip waters will be dominated by evaporative enrichment, up to ∼3‰ in the context of this study, relative to precipitation-weighted mean annual rainfall. The oxygen isotope variability of such coeval records may further be influenced by flow path and storage in the unsaturated zone that is not only drip specific but also influenced by internal cave climatic conditions, which may vary spatially in the cave

    Trace elements in speleothems as recorders of environmental change

    No full text
    Speleothems are now established as important palaeoenvironmental archives and contain a number of suitable proxies, although trace elements have been much less widely used than oxygen and carbon isotopes. The complexity of the cave environment helps to explain this since the fluids from which speleothems form vary greatly in composition in space (even within a cave chamber), seasonally, and over longer periods. Understanding the forcing factors for this variability is the key to decoding the significance of the trace element records. A variety of techniques are available for trace element work and it is important to understand the strengths and limitations of each and also to seek an understanding, e.g. by micro-imaging techniques, of whether the elements are associated with inclusions in the CaCO3, or are isolated within the crystal lattice. For some elements there is a more-or-less predictable relationship between element ratios to Ca in the water and in the calcite. Individual trace elements may be derived from atmospheric deposition, superficial deposits or bedrock and can be recycled in soil processes before being transferred to the cave. Some components show an instantaneous response to water infiltration, whereas others are only leached by slow-flowing seepage waters. Changing in the proportion of water from fracture-fed and seepage-flow aquifer compartments is an important factor in influencing trace element supply. High flows lead to higher fluxes of soil-derived colloidally transported elements. Conversely, under relatively dry conditions, degassing of CO2 results in “prior calcite precipitation” upflow of the site of speleothem deposition and leads to higher ratios of Sr/Ca and Mg/Ca. Some trace element variations in speleothems over time are induced during crystal growth whereby faster growth leads to a greater departure from equilibrium element partitioning. Despite the demonstrated temperature-dependence of Mg partitioning into calcite, attempts at deriving palaeotemperature records from speleothem

    Trace elements in speleothems as recorders of environmental change

    No full text
    Speleothems are now established as important palaeoenvironmental archives and contain a number of suitable proxies, although trace elements have been much less widely used than oxygen and carbon isotopes. The complexity of the cave environment helps to explain this since the fluids from which speleothems form vary greatly in composition in space (even within a cave chamber), seasonally, and over longer periods. Understanding the forcing factors for this variability is the key to decoding the significance of the trace element records. A variety of techniques are available for trace element work and it is important to understand the strengths and limitations of each and also to seek an understanding, e.g. by micro-imaging techniques, of whether the elements are associated with inclusions in the CaCO3, or are isolated within the crystal lattice. For some elements there is a more-or-less predictable relationship between element ratios to Ca in the water and in the calcite. Individual trace elements may be derived from atmospheric deposition, superficial deposits or bedrock and can be recycled in soil processes before being transferred to the cave. Some components show an instantaneous response to water infiltration, whereas others are only leached by slow-flowing seepage waters. Changing in the proportion of water from fracture-fed and seepage-flow aquifer compartments is an important factor in influencing trace element supply. High flows lead to higher fluxes of soil-derived colloidally transported elements. Conversely, under relatively dry conditions, degassing of CO2 results in “prior calcite precipitation” upflow of the site of speleothem deposition and leads to higher ratios of Sr/Ca and Mg/Ca. Some trace element variations in speleothems over time are induced during crystal growth whereby faster growth leads to a greater departure from equilibrium element partitioning. Despite the demonstrated temperature-dependence of Mg partitioning into calcite, attempts at deriving palaeotemperature records from speleothem

    Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia

    No full text
    Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by <i>k</i> means is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in agreement with our understanding of cave chamber morphology and lithology
    corecore