135 research outputs found

    A cold-water fish striving in a warming ocean: Insights from whole-genome sequencing of the Greenland halibut in the Northwest Atlantic

    Get PDF
    Characterizing the extent of genetic differentiation among individuals and its distribution across the genome is increasingly important to inform both conservation and management of exploited species. The Greenland Halibut is one of the main demersal fish species to be commercially exploited in Eastern Canada, and accurate information on geographic population structure and local adaptation is required to ensure the long-term presence of this species. We generated high-quality whole-genome sequencing data for 1,297 Greenland Halibut sampled across 32 locations throughout the Northwest Atlantic (from Arctic Canadian and Greenlandic coasts to the Gulf of St Lawrence). Population genetic structure was analyzed, revealing an absence of population differentiation between Canada and west Greenland but significant genetic differentiation between the Gulf of Saint Lawrence and the remainder of the Northwest Atlantic. Except for Gulf of Saint Lawrence, Greenland Halibut thus appear to be panmictic throughout the Northwest Atlantic. Environmental Association Analyses revealed that the environment explained up to 51 % might be replaced by 51% of the differentiation observed between the two stocks, with both ocean-bottom and surface variables (e.g., temperature and oxygen) involved in the observed genomic differentiation. Altogether, these results indicate that phenotypic differences previously observed between the Gulf of Saint Lawrence and the Northwest Atlantic likely resulted from functional adaptive divergence to their respective environmental conditions. Using coalescent simulations, we also assessed how high levels of migration between the two stocks would allow Greenland Halibut to potentially escape unfavorable environmental conditions in the Gulf of Saint Lawrence. In addition to supporting the management of this important exploited species, this work highlights the utility of using comprehensive genomic datasets to characterize the effects of climate change across a wider range of species

    Roles of forest bioproductivity, transpiration and fire in a nine-year record of cave dripwater chemistry from southwest Australia

    Get PDF
    Forest biomass has the potential to significantly impact the chemistry and volume of diffuse recharge to cave dripwater via the processes of nutrient uptake, transpiration and forest fire. Yet to-date, this role has been under-appreciated in the interpretation of speleothem trace element records from forested catchments. In this study, the impact of vegetation is examined and quantified in a long-term monitoring program from Golgotha Cave, SW Australia. The contribution of salts from rain and dry-deposition of aerosols and dissolved elements from soil mineral and bedrock dissolution to dripwater chemistry are also examined. This study is an essential pre-requisite for the future interpretation of trace element data from SW Australian stalagmite records, whose record of past environmental change will include alterations in these biogeochemical fluxes. Solute concentrations in dripwater vary spatially, supporting the existence of distinct flow paths governed by varying amounts of transpiration as well as nutrient uptake by deeply-rooted biomass. Applying principal components analysis, we identify a common pattern of variation in dripwater Cl, Mg, K, Ca, Sr and Si, interpreted as reflecting increasing transpiration, due to forest growth. Mass-balance calculations show that increasing elemental sequestration into biomass has the largest impact on SO4, providing an explanation for the overall falling dripwater SO4 concentrations through time, in contrast to the transpiration-driven rising trend dominating other ions. The long-term rise in transpiration and nutrient uptake driven by increased forest bioproductivity and its impact on our dripwater chemistry is attributed to i. the post-fire recovery of the forest understorey after fire impacted the site in 2006 CE; ii. and/or increased water and nutrient demand as trees in the overlying forest mature. The impact of climate-driven changes on the water balance is also examined. Finally, the implications for interpreting SW Australian speleothem trace element records are discussed

    Continental aridification and the vanishing of Australia\u27s megalakes

    Get PDF
    The nature of the Australian climate at about the time of rapid megafaunal extinctions and humans arriving in Australia is poorly understood and is an important element in the contentious debate as to whether humans or climate caused the extinctions. Here we present a new paleoshoreline chronology that extends over the past 100 k.y. for Lake Mega-Frome, the coalescence of Lakes Frome, Blanche, Callabonna and Gregory, in the southern latitudes of central Australia. We show that Lake Mega-Frome was connected for the last time to adjacent Lake Eyre at 50-47 ka, forming the largest remaining interconnected system of paleolakes on the Australian continent. The final disconnection and a progressive drop in the level of Lake Mega-Frome represents a major climate shift to aridification that coincided with the arrival of humans and the demise of the megafauna. The supply of moisture to the Australian continent at various times in the Quaternary has commonly been ascribed to an enhanced monsoon. This study, in combination with other paleoclimate data, provides reliable evidence for periods of enhanced tropical and enhanced Southern Ocean sources of water filling these lakes at different times during the last full glacial cycle. © 2011 Geological Society of America

    Promotion Determinants in Corporate Hierarchies: An Examination of Fast Tracks and Functional Area

    Get PDF
    This chapter estimates a dynamic reduced-form model of intra-firm promotions using an employer–employee panel of over 300 of the largest corporations in the United States in the period from 1981 to 1988. The estimation conditions on unobserved individual heterogeneity and allows for both an endogenous initial condition and sample attrition linked to individual heterogeneity in demonstrating the relative importance of variables that influence promotion. The role of the executive’s functional area in promotion is considered along with the existence and source of promotion fast tracks. We find that while the principal determinant of promotions is unobserved individual heterogeneity, functional area has a high explanatory power, resulting in promotion probabilities that differ by functional area for executives at the same reporting level and firm. No evidence is found that an executive’s recent speed of advancement in pay grade has a positive causal impact on in-sample promotions after conditioning on the executive’s career speed of advancement, except for the lowest level executives the data. Fast tracks appear to largely result from heterogeneity in persistent individual characteristics, not from an inherent benefit in recent advancement itself

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems

    Get PDF
    Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ 18O, δ 13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range
    corecore