65 research outputs found

    Nicotine Modulates The Expression Of A Diverse Set Of Genes In The Neuronal Sh-Sy5Y Cell Line

    Get PDF
    Nicotine exposure can have long lasting effects on nervous system function, some of which must contribute to nicotine dependence. Up-regulation, an increase in numbers of radioligand-binding nicotinic acetylcholine receptors (nAChR), occurs on exposure to nicotine at high concentrations. To determine whether altered gene expression might account for long term changes and up-regulation following nicotine exposure, we assessed effects of 1 h of 1 mM nicotine exposure on alter. ation of gene expression in the neuron-like SH-SY5Y neuroblastoma clonal line. Repeat and cross-controlled microarray analyses yielded a list of 17 genes from the initially screened ∼5,000 whose expression was consistently altered following nicotine treatment. Subsequent quantitative, real time reverse transcriptase PCR analyses confirmed altered expression in 14 of 16 genes tested. Further, the general nAChR antagonist, d-tubocurarine, blocked all but two of the observed changes in gene expression, indicating that these changes are dependent on nAChR activation. Use of other antagonists revealed that nAChR subtypes can differentially affect gene expression. The genes affected code for proteins that may be broadly categorized into four groups: transcription factors, protein processing factors, RNA-binding proteins, and plasma membrane-associated proteins. Our results suggest that nicotinic activation of nAChR may have a broad role in affecting cellular physiology through modulating gene expression

    Genomic and Proteomic Biomarker Discovery in Neurological Disease

    Get PDF
    Technology for high-throughout scanning of the human genome and its encoded proteins have rapidly developed to allow systematic analyses of human disease. Application of these technologies is becoming an increasingly effective approach for identifying the biological basis of genetically complex neurological diseases. This review will highlight significant findings resulting from the use of a multitude of genomic and proteomic technologies toward biomarker discovery in neurological disorders. Though substantial discoveries have been made, there is clearly significant promise and potential remaining to be fully realized through increasing use of and further development of -omic technologies

    High-content siRNA screening of the kinome identifies kinases involved in Alzheimer's disease-related tau hyperphosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurofibrillary tangles (NFT), a cardinal neuropathological feature of Alzheimer's disease (AD) that is highly correlated with synaptic loss and dementia severity, appear to be partly attributable to increased phosphorylation of the microtubule stabilizing protein tau at certain AD-related residues. Identifying the kinases involved in the pathologic phosphorylation of tau may provide targets at which to aim new AD-modifying treatments.</p> <p>Results</p> <p>We report results from a screen of 572 kinases in the human genome for effects on tau hyperphosphorylation using a loss of function, high-throughput RNAi approach. We confirm effects of three kinases from this screen, the eukaryotic translation initiation factor 2 α kinase 2 (EIF2AK2), the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and the A-kinase anchor protein 13 (AKAP13) on tau phosphorylation at the 12E8 epitope (serine 262/serine 356). We provide evidence that EIF2AK2 effects may result from effects on tau protein expression, whereas DYRK1A and AKAP13 are likely more specifically involved in tau phosphorylation pathways.</p> <p>Conclusions</p> <p>These findings identify novel kinases that phosphorylate tau protein and provide a valuable reference data set describing the kinases involved in phosphorylating tau at an AD-relevant epitope.</p

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer’s dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia

    Nicotinic Modulation Of Gene Expression In Sh-Sy5Y Neuroblastoma Cells

    No full text
    Exposure to nicotine has a broad range of physiological and psychological effects that can be long lasting and contribute to nicotine dependence. On a time course longer than that needed to activate nicotinic acetylcholine receptor (nAChR) function, nicotine exposure induces functional inactivation of nAChR, upregulation of nAChR radioligand binding sites, and other alterations of cellular functions. To identify possible mechanisms underlying nicotine-induced changes in nAChR numbers and function, we defined changes in gene expression in neuron-like, SH-SY5Y human neuroblastoma cells following 24 h of continuous exposure to 1 mM nicotine. This treatment condition produces both functional inactivation and upregulation of nAChR. Repeat and cross-controlled microarray (∼ 5000 genes queried) analyses revealed 163 genes whose expression was consistently altered at the p \u3c 0.01 level following nicotine treatment. Quantitative, real-time, reverse transcription-polymerase chain reaction analyses confirmed altered expression of thirteen out of fourteen of these genes chosen for further study, including contactin 1, myozenin 2, and ubiquitin-conjugating enzymes E2C and E2S. Inhibition or reversal of these effects by the general nAChR antagonist, d-tubocurarine, indicated that gene expression changes are dependent on nAChR activation. Studies using other nAChR subtype-selective antagonists identified gene expression changes that required activation of both α7- and α3*-nAChR, α7-nAChR alone, or either α7- or α3β4*-nAChR, suggesting some convergent and some divergent pathways of gene activation coupled to these nAChR subtypes. These results suggest that longer-term physiological and psychological effects of nicotine exposure and changes in nAChR expression may be due in part to effects on gene expression initiated by interactions with nAChR. © 2006 Elsevier B.V. All rights reserved
    corecore