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Nicotine Modulates the Expression of a Diverse Set of Genes in the
Neuronal SH-SY5Y Cell Line*
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Travis Dunckley and Ronald J. Lukas‡
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Nicotine exposure can have long lasting effects on
nervous system function, some of which must contribute
to nicotine dependence. Up-regulation, an increase in
numbers of radioligand-binding nicotinic acetylcholine
receptors (nAChR), occurs on exposure to nicotine at
high concentrations. To determine whether altered
gene expression might account for long term changes
and up-regulation following nicotine exposure, we as-
sessed effects of 1 h of 1 mM nicotine exposure on alter-
ation of gene expression in the neuron-like SH-SY5Y
neuroblastoma clonal line. Repeat and cross-controlled
microarray analyses yielded a list of 17 genes from the
initially screened �5,000 whose expression was consis-
tently altered following nicotine treatment. Subsequent
quantitative, real time reverse transcriptase PCR anal-
yses confirmed altered expression in 14 of 16 genes
tested. Further, the general nAChR antagonist, d-tubo-
curarine, blocked all but two of the observed changes in
gene expression, indicating that these changes are de-
pendent on nAChR activation. Use of other antagonists
revealed that nAChR subtypes can differentially affect
gene expression. The genes affected code for proteins
that may be broadly categorized into four groups: tran-
scription factors, protein processing factors, RNA-bind-
ing proteins, and plasma membrane-associated pro-
teins. Our results suggest that nicotinic activation of
nAChR may have a broad role in affecting cellular phys-
iology through modulating gene expression.

Nicotinic acetylcholine receptors (nAChR)1 are ligand-gated
cation channels implicated in a variety of neuronal functions,
including memory processing (1), neurotransmitter release (2),

cell survival (3), and synaptic plasticity (4). Nicotine is a to-
bacco alkaloid that acts acutely to stimulate nAChR channel
opening, as does the endogenous nAChR ligand, the neuro-
transmitter acetylcholine. This functional response is a tran-
sient event thought only to alter electrical activity in excitable
cells. However, some nAChR are expressed in nonexcitable
tissues. Moreover, longer term psychological and physiological
effects of nicotine on the brain and body also must reflect
interactions with nAChR, but only if there are lasting conse-
quences of ligand binding and/or ion channel opening. An im-
proved understanding of both the molecular signaling cascades
initiated by short or longer term interactions of nicotine with
nAChR and the specific targets of those signaling cascades is
essential to enhanced perspectives on normal physiological
roles of nAChR.

Nicotine is known to affect the expression of several genes.
Among these is the gene coding for tyrosine hydroxylase, which
is involved in a rate-limiting step in catecholamine synthesis
(5, 6), as well as genes involved in the regulation of food intake
and energy expenditure, such as neuropeptide Y, orexins, and
their receptors (7, 8). In addition, nicotine, like other sub-
stances of abuse, such as cocaine and alcohol, induces the
expression of immediate early genes such as c-fos and junB in
various brain regions (9–11). Nicotine also up-regulates the
mRNA levels of c-fos and c-jun in the neuronal SH-SY5Y cell
line.2 Because these immediate early genes function as tran-
scription factors, their nicotine-mediated up-regulation sug-
gests that nicotine may regulate the expression of additional
genes in SH-SY5Y cells.

Nicotine activates the mitogen-activated protein kinase
(MAPK) signaling pathway in a variety of tissues and cell types
(12–15). Recent work indicates that nicotine also activates this
signaling pathway in SH-SY5Y cells (16). Further, nicotine and
MAPK signaling pathways affect many of the same cellular
processes, such as cell survival and memory processing (1, 3,
17, 18).

Beyond the role of nicotine in activating the MAPK cascade
and early immediate gene expression, little is known about the
specific genes that nicotine may regulate. We therefore inves-
tigated the effects of nicotine exposure on gene expression in
the SH-SY5Y cell line using a microarray-based approach to
identify candidate nicotine-regulated genes. We show that nic-
otine, at a concentration that induces up-regulation of nAChR,
a process that has been implicated in nicotine dependence and
tolerance, affects the expression of a wide range of genes that
code for proteins with seemingly diverse functions. Collectively,
these results demonstrate that nicotine can modulate the gene
expression profile of a neuron-like cell line and suggest that
some of the cellular and physiological effects of nicotine may
result from these nAChR-mediated effects.
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Neurochemistry of Alzheimer’s Disease Laboratory. The costs of publi-
cation of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
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1 The abbreviations used are: nAChR, nicotinic acetylcholine recep-
tor(s); MAPK, mitogen-activated protein kinase; RT, reverse tran-
scriptase; d-TC, d-tubocurarine; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; PTP�, protein-tyrosine phosphatase receptor �; EGR1,
early growth response 1; PIG7, p53-induced gene 7; RBBP6, retinoblas-
toma binding protein 6; UBE3A, ubiquitin ligase E3A; C2orf2, chromo-
some 2 open reading frame 2; TFPI2, tissue factor pathway inhibitor 2;
ZFR, zinc finger RNA-binding protein; MLL3, myeloid/lymphoid or
mixed lineage leukemia 3; FEZ, fasciculation and elongation protein �,
Zygin; DHFR, dihydrofolate reductase. 2 L. Lucero and R. J. Lukas, unpublished observation.
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MATERIALS AND METHODS

Drug Treatment and RNA Isolation—The SH-SY5Y human neuro-
blastoma-derived cell line was grown to 90% confluence and treated
with 1 mM nicotine for 1 h at 37 °C under standard incubation condi-
tions (95% humidity, 5% CO2) (19). Messenger RNA was isolated using
the Oligotex® Direct mRNA isolation kit (Qiagen) following the manu-
facturer’s protocol. In a repeat experiment for RT-PCR analyses (see
below), SH-SY5Y cells at 90% confluence were treated with 1 mM

nicotine alone, 100 �M d-tubocurarine (d-TC) alone, or 1 mM nicotine
plus 100 �M d-TC for 1 h at 37 °C. Total RNA was isolated using TRIzol®

reagent (Invitrogen). To assess nAChR subtype-specific effects on gene
expression, SH-SY5Y cells were grown to 90% confluence and treated
with 1 mM nicotine, 1 �M �-cobratoxin, 1 �M �-cobratoxin plus 1 mM

nicotine, 3 �M mecamylamine, or 3 �M mecamylamine plus 1 mM nico-
tine for 1 h at 37 °C. Total RNA was isolated using TRIzol® reagent
(Invitrogen). RNA concentrations were measured by spectrophotometry
and adjusted accordingly. Only RNA samples with an A260/A280 ratio �
1.4 were used for microarray hybridizations and RT-PCR experiments.

Synthesis of Fluorescent cDNA and Hybridization to Microarray
Slides—Microarray analyses were performed by the University of Ari-
zona Cancer Center Microarray Core Facility on a fee-for-service basis.
Briefly, for both the control sample and the nicotine-treated sample, 4
�g of mRNA was reverse transcribed using avian myeloblastosis virus
reverse transcriptase, incorporating Cy3-dUTP into the control sample
cDNA and Cy5-dUTP into the nicotine-treated sample cDNA. In sepa-
rate reverse transcription reactions for an independent hybridization,
the control sample cDNA was labeled with Cy5-dUTP, and the nicotine-
treated sample cDNA was labeled with Cy3-dUTP. These reciprocal
labeling reactions were performed twice and hybridized to individual
arrays, yielding four replicate sets of “dye switch” data designed to
control for any bias caused by selectivity of dye staining intensity of
specific cDNAs.

The labeled cDNA probes were purified using the QIAquick® PCR
purification kit (Qiagen). The purified cDNA was then mixed with a
hybridization buffer containing 15 �g of poly(dA), 6 �g of yeast tRNA,
15 �g of CoT 10 DNA, 2� Denhardt’s, 2.7� SSC, and 0.2% SDS,
denatured, and hybridized for 16 h at 62 °C on a 5K cDNA microarray.
The cDNAs imprinted on these arrays are available from Research
Genetics. For detailed information about the microarray used in these
experiments and the genes represented on the array refer to azcc-
microarray.arl.arizona.edu/index.php3. Following hybridization, the
slides were washed for 15 min in 0.5� SSC, 0.01% SDS and for 15 min
in 0.06� SSC, 0.01% SDS, followed by a final 5-min wash with 0.06�
SSC. The slides were then scanned for fluorescence emission from each
spot on the array at 570 and 670 nm for Cy3 and Cy5, respectively.

Normalization of Fluorescence Intensity and Analysis of Expression
Levels—In microarray studies performed at the Arizona Cancer Center
microarray facility, median intensity of a given spot of 1.4-fold above
background intensity in both the Cy5 and Cy3 channels was required
for calculation of expression ratios. Background intensity was assessed
by measuring fluorescence from a spot containing no cDNA. The raw
levels of fluorescence for each spot were corrected for this background
fluorescence and analyzed. The fluorescence intensity values in the two
fluorescence channels were normalized relative to a set of housekeeping
genes. Lastly, the standard deviation of the mean of the log10 of the
ratios for the housekeeping genes was used to calculate 40, 60, 80, 90,
95, and 99% confidence intervals, against which the ratios of signal
intensities for all other spots on the arrays with fluorescence above
background were compared. The statistical significance of the changes
identified were calculated using a paired, two-tailed t test comparing
the observed expression ratios for the four replicates to a reference
value of 1.

Quantitative, Real Time Polymerase Chain Reaction—For this anal-
ysis, 5 �g of DNase I-treated total RNA from the untreated SH-SY5Y
cells and from each of the drug-treated cells was reverse transcribed
using SuperScript® II reverse transcriptase (Invitrogen). Following re-
verse transcription, each sample was diluted such that cDNA corre-
sponding to that produced from 10 ng of total RNA was used in subse-
quent PCRs. PCRs were performed using the LightCycler® (Roche
Molecular Biochemicals), which allows real time monitoring of the
increase in PCR product concentration after every cycle based on the
fluorescence of the double-stranded DNA specific dye SYBR green (20,
21). The number of cycles required to produce a detectable product
above background was measured for each sample. These cycle numbers
were then used to calculate fold differences in the starting mRNA level
for each sample using the following method. First, the cycle number
difference for vimentin, a housekeeping gene, was determined in the

control sample and the appropriate drug-treated sample. This differ-
ence was referred to as �H. Next, the cycle number difference for the
gene of interest was determined in the control sample and the appro-
priate drug-treated sample, yielding another value, �I. The cycle num-
ber difference for the gene of interest was then corrected for slight
differences in the amount of total RNA in control and drug-treated
samples by subtracting �H from �I, yielding a new value, �K. The
expression ratio for the gene of interest was then calculated as 2�(�K) for
genes that were induced and as �(2�K) for genes that were repressed.
The expression ratios reported are the averages of three to eight repli-
cate PCRs. The statistical significance was calculated using a paired,
two-tailed t test comparing the cycle number difference for the gene of
interest (�I) to that of vimentin (�H) across all replicates. Specificity of
each primer pair was confirmed by melting curve analysis and agarose
gel electrophoresis. The primers were designed using Primer3 software
(bioinformatics.weizmann.ac.il/cgi-bin/primer/primer3.cgi) and subse-
quently checked for specificity using BLAST (www.ncbi.nlm.nih.
gov/genome/seq/HsBlast.html).

RESULTS

Nicotine Consistently Alters the Expression of a Diverse Set of
Genes—To assess the extent to which nicotine modulates gene
expression in neuronal cells, we have performed analyses using
a microarray containing cDNAs corresponding to �5,000 dif-
ferent genes. These results provide the foundation for more
exhaustive whole genome screening. However, here we have
focused on a smaller number to identify novel nicotine-regu-
lated genes and firmly establish the extent to which nicotine
alters the expression of these genes. For these analyses, the
neuroblastoma-derived SH-SY5Y cell-line was treated with 1
mM nicotine for 1 h. Treatment with 1 mM nicotine maximally
induces a long lasting up-regulation in numbers of nAChR
radioligand-binding sites in SH-SY5Y cells, and this up-regu-
lation has been implicated in long lasting effects of nicotine
exposure, such as nicotine dependence and tolerance (22). Mes-
senger RNA isolated from these cells or from control cells was
used in the microarray analyses. Based on previous results
investigating the effects of nicotine on gene expression (23), we
anticipated that nicotine may have subtle effects on gene ex-
pression in the SH-SY5Y cell line. For this reason, we per-
formed reciprocal fluorescent labeling of the control and nico-
tine-treated mRNA populations in duplicate, yielding a data
set consisting of four independently hybridized, cross-con-
trolled microarrays (see “Materials and Methods”). Multiple
replicate hybridizations using reverse labeled samples are nec-
essary to elucidate significant changes in gene expression in
the 1.2–1.6-fold range (see Ref. 24 and references therein).
These multiple hybridizations and reciprocal labeling experi-
ments were then assessed to identify the most consistent and
significant (reproducible changes in effects between experi-
ments) changes in gene expression.

We compared all of the data at the 40% confidence interval
(see “Materials and Methods”) for genes whose expression was
consistently up-regulated or down-regulated in all four repli-
cate hybridizations. We selected the 40% confidence interval to
avoid excluding subtle gene expression changes. Using this
comparison we identified a list of 17 consistently altered genes
(Table I). Statistical analyses using Student’s t test showed
these changes to be significant at the p � 0.05 level for all but
one of these genes (RAB6A). The number of affected genes
increased to 51 when comparing only three arrays and to 392
genes if only one reciprocal labeling experiment was used.
Thus, multiple replicate arrays using reverse labeled samples
were necessary to minimize the number of false positives from
the large data set and to confirm identification of candidate
genes whose expression was changed subtly but reproducibly.
Importantly, because there was some variability in expression
ratios between hybridizations, it is possible that significant but
subtle changes in gene expression were lost as more replicates
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were added to the analysis. The genes identified and the sig-
nificance of their sensitivity to nicotine exposure will be dis-
cussed in greater detail below. However, it is notable that there
were increases in expression of only 3 of the 17 genes, whereas
expression of the other 14 genes was repressed by nicotine
treatment. Also notable was the low magnitude of these
changes resulting from nicotine treatment, including 26–38%
increases in gene expression for the three up-regulated genes
and a greater than 2-fold decrease in expression for only one of
the 14 down-regulated genes.

Nicotine Alters Gene Expression through nAChR Activa-
tion—We used a pharmacological approach both as another
way to test the significance and specificity of changes in gene
expression and, because nicotine readily crosses the cell mem-
brane, to assess whether nicotine altered gene expression
through nAChR-dependent or nAChR-independent pathways.
In the course of these studies, we also obtained sample repli-
cates and analyzed them by real time RT-PCR to confirm the
results of the microarray surveys. The SH-SY5Y cells were
treated with 1 mM nicotine alone, 100 �M d-TC (a general
nAChR antagonist) alone, or the combination of 100 �M d-TC
plus 1 mM nicotine. We then utilized quantitative, real time
RT-PCR using total RNA as the template to verify and replicate
the gene expression changes observed in the microarray exper-
iments (see “Materials and Methods”). Vimentin mRNA was
chosen as the control for normalization because its expression
level was unchanged in the microarray analyses (�1.03 �
0.31). In addition, subsequent RT-PCR experiments wherein
the levels of vimentin mRNA were compared with the gly-
ceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
showed that both mRNAs were present at comparable levels in
all drug-treated samples relative to the control sample (Fig. 1
and Table II (GAPDH row)). Further, when normalized to the
amount of total RNA in each sample, none of the drug treat-
ments altered the expression of either GAPDH or vimentin.
This result is consistent with previous studies using human
coronary artery endothelial cells where GAPDH expression
was unchanged in response to nicotine (23). These combined
results indicated that vimentin mRNA expression was unal-
tered in response to nicotine.

The RT-PCR analyses confirmed statistically significant

changes in expression of 14 of the 16 consistently altered genes
that were tested (Table II; RAB6A and regulatory factor X-as-
sociated protein expression was not significantly changed; RT-
PCR analysis of effects on expression of an expressed sequence
tag was not performed). Each primer pair was checked for
specificity by melting curve analysis and agarose gel electro-
phoresis to ensure that only specific product was quantitated
(Fig. 2 and data not shown). In most cases, the magnitude of
the change observed in the RT-PCR experiments was compa-
rable with or greater than that seen on the microarrays. Im-
portantly, pretreatment with d-TC blocked or reversed the
nicotine-induced changes in mRNA levels for all of the genes
identified (including a trend toward blockade of the effects of
nicotine on ZFR expression) except for the FEZ1 variants 1 and
2 (Table II). These results implicate nAChR function in the
observed nicotinic modulation of mRNA levels. Further, these
results argue that the observed modulation of gene expression
in the presence of nicotine is a specific effect of this drug acting
at nAChR.

FIG. 1. Housekeeping gene expression is unaltered in response
to both nicotine and d-tubocurarine. Shown is an inverted image of
an ethidium-stained agarose gel of RT-PCR samples corresponding to
the product present after 22 cycles of PCR for both vimentin (left) and
GAPDH (right). �nic, untreated control; �nic, samples treated with 1
mM nicotine for 1 h; d-TC, samples treated with 100 �M d-tubocurarine
for 1 h; d-TC � nic, samples treated with 1 mM nicotine and 100 �M

d-tubocurarine for 1 h. The fold change values were calculated as
described under “Materials and Methods” and correspond to the fold
change relative to the untreated (�nic) sample.

TABLE I
Microarray analyses reveal numerous, consistent, nicotine-induced alterations of gene expression

Listed are the gene names, GenBank™ accession numbers, and expression ratios for each individual array, as well as the average ratio (�S.D.)
across all four microarray hybridizations. The ratio corresponds to the normalized value of fluorescence intensities of the nicotine-treated sample
divided by that of the control sample. Therefore, a ratio greater than 1 indicates nicotine-induced upregulation of gene expression, whereas a ratio
less than 1 indicates repression. The GenBank™ accession numbers correspond to those for the cDNAs printed on the microarray, not to the
full-length mRNAs for each gene.

Gene name GenBank™
number

Array 1
ratio

Array 2
ratio

Array 3
ratio

Array 4
ratio

Average
ratio S.D.

Matrin3, Mat3 AA075307 1.29 1.52 1.33 1.39 1.38a 0.10
Contactin 1, CNTN1 H20566 0.73 0.69 0.48 0.83 0.68b 0.15
Fasciculation and elongation protein zeta, Zygin H20759 1.26 1.16 1.55 1.52 1.37b 0.19
Tissue factor pathway inhibitor 2, TFPI2 AA399473 1.13 1.16 1.31 1.45 1.26b 0.15
Chromosome 2 open reading frame 2, C2orf2 N64731 0.85 0.68 0.62 0.82 0.74b 0.11
Zinc finger RNA binding protein, ZFR AA232979 0.84 0.85 0.72 0.63 0.76b 0.10
Protein tyrosine phosphatase, receptor type A, PTP� H82419 0.83 0.74 0.74 0.85 0.79a 0.06
RAB6A H20138 0.81 0.79 0.48 0.77 0.71 0.16
PIG7/LPS-induced TNF-alpha factor, PIG7/LITAF1 AA625666 0.79 0.79 0.77 0.82 0.79a 0.02
Myeloid/lymphoid or mixed-lineage leukemia 3, MLL3 N91302 0.79 0.75 0.80 0.81 0.79a 0.02
Dihydrofolate reductase, DHFR N52980 0.78 0.66 0.77 0.68 0.72a 0.06
Regulatory factor X-associated protein, RFXAP AA057436 0.76 0.78 0.77 0.82 0.78a 0.03
EST T69754 0.73 0.57 0.71 0.71 0.68a 0.07
Ubiquitin protein ligase E3A, UBE3A R85213 0.70 0.75 0.76 0.81 0.75a 0.05
Retinoblastoma binding protein 6, RBBP6 R88741 0.65 0.64 0.68 0.79 0.69a 0.07
Homo sapiens mRNA; cDNA DKFZp564F112 N28268 0.49 0.52 0.75 0.45 0.54b 0.14
Early growth response 1, EGR1 AA486628 0.36 0.54 0.55 0.31 0.44b 0.12

a Significance at the p � 0.05 level as measured by paired t test.
b Significance at the p � 0.01 level.
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In some cases, the modulation of gene expression observed
using quantitative, real time RT-PCR was in the opposite di-
rection to that observed in the microarray analysis (compare
matrin3, FEZ1, TFPI2, and EGR1 in Tables I and II). Impor-
tantly, this apparent discrepancy does not reflect variation
between the mRNA samples used for the microarrays and the
replicate total RNA samples used for RT-PCR studies, because
matrin3, which showed slight induction on nicotine exposure in
the microarray experiments, was found in RT-PCR analyses of
both mRNA and total RNA samples to be comparably repressed

by nicotine treatment (Table II). Expression ratios were low for
these four genes but still in the range for the 10 other genes for
which RT-PCR and microarray studies showed concordance.
Absolute expression levels were low (data not shown) for FEZ1,
TFPI2, and EGR1 but not for matrin3. However, the 1.9-fold
increase in EGR1 expression that is seen here in the quantita-
tive, real time RT-PCR experiments with SH-SY5Y cells fol-
lowing 1 h of 1 mM nicotine treatment (Table II) is in concord-
ance with results of another study showing �2.8-fold induction
of EGR1 in PC12 cells following 1 h of 200 �M nicotine treat-
ment (25). Although we cannot fully explain the differences
between the microarray and RT-PCR results, we consider that
findings from quantitative, real time RT-PCR analyses, espe-
cially when corroborated by antagonist sensitivity of the effects
of nicotine, are more reliable than more raw microarray re-
sults. Therefore, we used RT-PCR findings for our interpreta-
tions if there was ambiguity in results from the two types of
analyses. Nevertheless, our observations underline the impor-
tance of secondary verification of microarray results and indi-
cate potential complications in deriving gene expression profil-
ing conclusions based solely on microarray analyses.

Nicotine Modulates the Levels of a Variety of mRNAs Coding
for Plasma Membrane-associated Proteins—The RT-PCR anal-
yses confirmed that nicotine treatment subtly but significantly
altered the levels of a variety of classes of mRNAs. Nicotine
repressed the expression of mRNAs that code for plasma mem-
brane associated proteins, including contactin 1 and protein-
tyrosine phosphatase receptor � (PTP�). Interestingly, the con-
tactin 1 protein physically interacts with PTP� (26) as well as
with voltage-gated Na� channels (27, 28). These observations
suggest interesting possibilities for roles of contactin and PTP�

in nAChR up-regulation (see “Discussion”). Another interesting
observation is that whereas nicotine exposure repressed ex-
pression, d-TC significantly induced UBE3A expression and
showed a distinct trend to induction of contactin 1 expression
(Table II). This induction was not reversed when nicotine and
d-TC were used in conjunction, suggesting at least two possible

TABLE II
Real time RT-PCR studies verify that nicotine modulates the expression of numerous genes

Real time RT-PCR experiments were performed as described under “Materials and Methods.” Matrin3 (mRNA) and Contactin 1 (mRNA) samples
represent reactions performed using the same samples that were used in the microarray hybridizations. All of the other results are from a replicate
experiment wherein total RNA was isolated and used as the template for the RT reactions. Column labels are as follows: Nicotine, samples treated
with 1 mM nicotine for 1 h; d-TC, samples treated with 100 �M d-tubocurarine for 1 h; d-TC � nicotine, samples treated with 1 mM nicotine and
100 �M d-tubocurarine for 1 h. The numbers in bold represent the average fold changes across multiple independent PCRs (from three to eight
reactions). The standard deviation of the �K values (see “Materials and Methods”) was used to calculate a range of fold induction or repression for
each sample to determine the reliability of the results. Each range column represents the range of values for the drug-treated sample to the left
of that column.

Gene name Nicotine Range � S.D. d-TC Range � S.D. d-TC � nicotine Range � S.D.

Matrin3 (mRNA) �1.82a �2.17/�1.52
Contactin1 (mRNA) �2.76a �3.32/�2.28
Matrin3 �1.58a �1.89/�1.32 1.52a 1.36/1.72 1.88 1.40/2.51
Contactin1 �1.48a �1.57/�1.37 1.41 1.15/1.74 1.59 1.29/1.96
FEZ1 variant1 �1.34a �1.48/�1.21 �1.34 �1.58/�1.13 �1.63 �2.35/�1.14
FEZ1 variant2 �1.69a �2.07/�1.39 �1.75 �2.60/�1.18 �2.72b �2.99/�2.46
TFPI2 �1.57b �1.85/�1.33 �1.18 �1.36/�1.03 �1.30 �1.66/�1.02
C2orf2 �1.94a �2.58/�1.44 �1.12 �1.51/1.21 �1.07 �1.51/1.32
ZFR �2.61b �3.20/�2.11 �1.33 �1.51/�1.17 �1.55a �1.75/�1.37
PTP� �1.67b �1.91/�1.46 �1.08 �1.26/1.08 �1.03 �1.31/1.22
RAB6A 1.15 �1.12/1.48 �1.01 �1.18/1.16 �1.16 �1.55/1.14
PIG7/LITAF1 �1.56a �1.85/�1.31 �1.04 �1.23/1.15 �1.18 �1.60/1.15
MLL3 �1.48a �1.75/�1.24 1.16a 1.13/1.19 �1.01 �1.44/1.40
DHFR �1.70b �2.00/�1.45 �1.48b �1.79/�1.23 �1.18 �1.67/1.20
RFXAP �1.15 �1.40/1.05 �1.01 �1.18/1.16 1.09 1.02/1.17
UBE3A �1.43a �1.71/�1.21 1.28a 1.20/1.38 1.44 �1.09/2.27
RBBP6 �3.75b �4.79/�2.95 �1.03 �1.18/1.12 1.09 1.02/1.17
cDNA DKFZp564F112 �1.86b �2.06/�1.69 �1.05 �1.14/1.04 1.21a 1.15/1.27
EGR1 1.91b 1.68/2.50 �1.09 �1.74/1.45 1.10 �1.27/1.53
GAPDH 1.00 �1.05/1.06 �1.01 �1.07/1.04 �1.02 �1.06/1.03

a Significance at the p � 0.05 level as measured by paired t test.
b Significance at the p � 0.01 level.

FIG. 2. The RT-PCR products are specific for each gene. Each
PCR generates only one product of the predicted size, indicating the
specificity of the primers used. The specific genes targeted in the PCRs
are indicated above the lanes. �nic, untreated control; �nic, samples
treated with 1 mM nicotine for 1 h; d-TC, samples treated with 100 �M

d-tubocurarine for 1 h; d-TC � nic, samples treated with 1 mM nic and
100 �M d-tubocurarine for 1 h. Quantitation of the amount of product
was performed in real time as described under “Materials and Meth-
ods.” Calculated expression ratios for each drug-treated sample relative
to the control sample are indicated beneath each lane. These values
represent the average values over at least three PCRs.
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explanations. First, there may be a low basal rate of spontane-
ous nAChR channel opening that helps to sustain the expres-
sion levels for these genes in the untreated case. Application of
the nAChR antagonist may prevent this spontaneous channel
opening, thereby resulting in increased expression. Nicotine-
mediated channel opening would have the opposite effect, re-
sulting in reduced expression. A second possibility is that bind-
ing of either agonist or antagonist to the nAChR may induce
alternative conformational changes in the receptor that either
activate or inhibit a regulatory pathway. Distinguishing be-
tween these possibilities will be a goal of future work.

Interestingly, nicotine also repressed the expression of an-
other membrane-associated protein TFPI2. TFPI2 codes for a
serine protease inhibitor that functions as a tumor suppressor
and is repressed in invasive cells of many tumor types (29–32).
Thus, 1 h of continuous nicotine treatment represses the ex-
pression of a known tumor suppressor gene in the SH-SY5Y
cell line.

Nicotinic Receptor Stimulation Alters Transcription Factor
Expression—Nicotine affected the expression of multiple
mRNAs coding for proteins that either are known to be in-
volved in transcription or that are implicated in transcription
based on homology. The early growth response 1 (EGR1)
mRNA is up-regulated (Table II). Results from the microarray
analysis suggested that nicotinic stimulation down-regulated
EGR1 expression (Table I). However, the expression levels of
EGR1 are only slightly above background in the microarray
analysis, decreasing the reliability of the observed expression
ratios using this technique (see “Discussion”). The induction of
EGR1 seen in the RT-PCR experiments (Table II) is consistent
with prior observations showing induction of immediate early
genes, such as c-fos, c-jun, and junB in SH-SY5Y cells and in
various brain regions in response to nicotine (9–11, 33). Fur-
ther, the 1.9-fold increase in EGR1 mRNA level observed here
is consistent with the 2.8-fold induction seen in PC12 cells
following 1 h of 200 �M nicotine treatment (25). Both cocaine
and amphetamine have been shown to induce EGR1 expression
in multiple brain regions. The identification of nicotine as an
additional EGR1-activating drug in a neuronal cell line pro-
vides further evidence for a common regulatory mechanism for
these drugs of abuse and suggests that the SY-SY5Y cell line
may be useful for elucidating the common signaling pathways
that these drugs activate.

The expression of several additional genes implicated in
transcription was changed in response to nicotine. In contrast
to EGR1, nicotine repressed the MLL3, p53-induced gene 7
(PIG7/LITAF1), and retinoblastoma binding protein 6 (RBBP6)
genes (Table II). Alteration of these genes that are implicated
directly or indirectly in transcription raises the possibility that
either these genes could be involved in regulating the expres-
sion of the other genes identified here or that there may be
additional genes whose expression may be affected in response
to nicotine.

Nicotine Affects the Expression of Genes Coding for Protein
Processing Factors and RNA-binding Proteins—Nicotine also
altered the expression of two genes involved in protein proc-
essing, ubiquitin ligase E3A (UBE3A) and chromosome 2 open
reading frame 2 (C2orf2). UBE3A exhibits brain specific ma-
ternal imprinting. Loss of function mutations in this gene are
associated with Angelman syndrome (for review see Ref. 34), a
disease in which seizures are common. Repression of this gene
suggests an additional possible underlying mechanism for the
observation that high doses of nicotine and various nAChR
antagonists can induce seizures in animal models (35–40).
C2orf2 encodes a protein of unknown function. However, this
protein contains numerous conserved domains including four

WD repeats and a highly conserved serine protease domain
suggestive of a role in protein processing (41).

Nicotine also alters the expression of two RNA-binding pro-
teins, matrin3 and ZFR, potentially implicating nAChR in RNA
processing events. The ZFR protein is essential for murine
embryonic development (42). However, the human ZFR mRNA
is highly expressed in adult brain (43), suggesting that this
gene has important functions beyond development. Matrin3 is
a member of a large family of RNA-binding proteins and is a
nuclear matrix protein known to be involved in the nuclear
retention of A-to-I edited mRNA (44). The potential role of
these genes in nAChR function and in the physiological effects
of nicotine is currently unclear. Regardless, repression of these
mRNAs in response to nicotine suggests that nicotine may
affect RNA metabolism.

Different nAChR Subtypes Have Varying Effects on Gene
Expression—The SH-SY5Y cell line expresses �3, �5, �7, �2,
and �4 nAChR subunits that assemble to form various �3*-
nAChR subtypes or homomeric �7-nAChR (19, 45). To determine
which receptor subtypes mediate the observed gene expression
changes, we treated SH-SY5Y cells with nicotine in the presence
of either 1 �M �-cobratoxin or 3 �M mecamylamine. �-Cobratoxin
is thought to be a specific ligand for nAChR containing �1 or �7
subunits. A 1 �M dose of �-cobratoxin will specifically inhibit
responses to nicotine of �7-nAChR expressed by SH-SY5Y cells.
Although interactions of mecamylamine (or of d-tubocurarine)
at non-nAChR targets cannot be entirely discounted, mecamyl-
amine at low micromolar doses selectively inhibits nAChR con-
taining �3 or �4 subunits. The mecamylamine inhibition pro-
file for SH-SY5Y cells suggests that �3�4*-nAChR represent
the primary �3*-nAChR subtype present (19). Mecamylamine
at a concentration of 3 �M would be expected to inhibit about
80% of the nicotinic responses of �3�4*-nAChR and only 20% of
�7-nAChR responses to nicotine (46).

Results showed that �-cobratoxin blocked nicotine-mediated
repression of C2orf2 and RBBP6 (Table III). This result sug-
gests that specific activation of �7-nAChR is both necessary
and sufficient to down-regulate both of these mRNAs. In
contrast, none of the observed changes in C2orf2 or RBBP6
gene expression were specifically blocked by mecamylamine at
a 3 �M concentration. However, either �-cobratoxin or
mecamylamine affected the nicotine-mediated repression of
multiple genes. For contactin1, MLL3, UBE3A, ZFR, and
DHFR,both�-cobratoxinandmecamylaminepreventednicotine-
dependent repression of gene expression. These results implied
that simultaneous signaling through both �7-nAChR and �3*-
nAChR subtypes was required for nicotine-dependent repres-
sion of these mRNAs. In addition, MLL3 showed a trend
toward induction in response to the combination of mecamyla-
mine plus nicotine.

Antagonist effects on nicotine repression or induction of
other genes were more complex. Repression of PTP�, PIG7, and
cDNA DKFZp564F112 (represented by GenBankTM accession
number N28268) were not blocked by either �-cobratoxin or
mecamylamine. The combined set of observations that PTP�,
PIG7, and N28268 repression are blocked when all nAChR
subtypes are inhibited by d-TC (Table II) but not when �7- or
�3�4*-nAChR are inhibited alone suggests that nicotine-medi-
ated signaling through either receptor subtype is sufficient to
modulate expression of these genes. However, it should be
noted that we cannot rule out the possibility that the remaining
20% of functional �3�4*-nAChR in the presence of 3 �M

mecamylamine may be sufficient to repress these genes in
response to nicotine. Alternatively, repression of these genes
could occur through additional �3* subtypes that are not in-
hibited by mecamylamine at a 3 �M concentration.
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There were instances where �-cobratoxin exposure alone
affected mRNA expression comparably to the effects of nicotine
(Table III). This effect of �-cobratoxin alone also complicates
the interpretation of findings for contactin 1, MLL3, DHFR,
and UBE3A, where a block of the effects of nicotine by �-cobra-
toxin was seen. Similarly, there were instances where
mecamylamine exposure alone affected mRNA expression com-
parably to nicotine, thereby possibly explaining why
mecamylamine did not block the effects of nicotine on C2orf2.
Additionally, the effect of mecamylamine alone complicates the
interpretation of findings for DHFR and UBE3A, where a block
of the effects of nicotine by mecamylamine was seen. These
results imply that the combined effects of agonist and antago-
nist acting at nAChR can have differing effects on gene expres-
sion than either agonist or antagonist acting alone. Further,
assuming that there are no effects of these antagonists on other
targets, these results suggest that changes in the conformation
of the nAChR that result from antagonist or agonist binding
may play a role in activating signaling pathways that ulti-
mately result in alterations of gene expression.

DISCUSSION

Microarray Analyses Can Elucidate Nicotine-dependent
Changes in Gene Expression—The current findings indicate
that exposure of neuronal SH-SY5Y cells to nicotine at a con-
centration that produces maximal nAChR up-regulation has
relatively subtle effects on the expression of a range of genes
coding for proteins with diverse functions. These effects can be
identified using a microarray-based approach provided that
sufficient replicate, reciprocal labeling experiments are per-
formed to separate the true responses from the background
noise. The microarray approach is useful for generating hy-
pothesis about what genes are affected by a given treatment.
However, subsequent RT-PCR experiments are required to in-
dependently validate the microarray results, especially when
there is a low test/control expression ratio or when mRNA
levels are only slightly above background. Further validation of
results using pharmacological studies also is suggested when
possible. In this study, quantitative, real time RT-PCR exper-
iments confirmed altered expression following nicotine expo-
sure for 14 of the 16 genes tested base on microarray findings
(Table II). Ten of these genes are altered in a manner consist-
ent with the observed expression ratios from the microarray
analyses. In contrast, RT-PCR experiments to detect the
mRNAs for matrin3, FEZ1, TFPI2, and EGR1 showed that the
expression levels of these genes were altered in a direction
opposite to that observed in the microarray analyses. This
finding could reflect low expression ratios (Table I) and, except
for matrin3, low absolute levels of mRNA expression for these
genes in SH-SY5Y cells (data not shown). Nevertheless, phar-
macological studies indicated nicotinic receptor antagonist sen-
sitivity of effects of nicotine on expression of 13 of the 14 genes
confirmed by RT-PCR analyses. Collectively, the results of this
study illustrate the utility of microarrays as screening devices.
Moreover, the results also underscore the need for more com-
prehensive RT-PCR studies to validate and extend the results
of microarray analyses. In addition, pharmacological ap-
proaches can be valuable to provide further verification and
illumination of observations.

Effects of Nicotine on Gene Expression Involve nAChR Acti-
vation—Nicotine rapidly crosses the plasma membrane and
therefore could affect gene expression either through a nAChR-
dependent signaling pathway or through a nAChR-independ-
ent pathway. To distinguish between these possibilities, we
determined whether nicotine could modulate gene expression
when nAChR activity was blocked by the general nAChR an-
tagonist d-TC. The critical observation suggesting that nAChR
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activation is involved in the nicotine-dependent modulation of
gene expression is that d-TC blocks most of the observed nico-
tine-induced changes in gene expression. This finding verifies
that the observed subtle changes in gene expression resulting
from nicotine exposure are a specific effect of this drug acting at
nAChR. Further, this finding implies that there may be signal-
ing pathways leading from the nAChR to the nucleus to affect
gene expression (see below). However, it is possible that some
of the observed effects on mRNA levels could result from post-
transcriptional mechanisms.

Individual nAChR Subtypes Differentially Affect Gene Ex-
pression—The SH-SY5Y cells express homomeric �7-nAChR
and heteromeric �3*-nAChR subtypes. Experiments wherein
�7-nAChR and �3*-nAChR subtypes were differentially inhib-
ited using either 1 �M �-cobratoxin or 3 �M mecamylamine
yielded four important observations (see Table IV for a sum-
mary of antagonist studies in RT-PCR analyses). First, �-co-
bratoxin prevented the nicotine-dependent down-regulation of
both C2orf2 and RBBP6 mRNAs. This result indicates that
down-regulation of these mRNAs results exclusively from acti-
vation of the �7-nAChR. Second, both �-cobratoxin and
mecamylamine blocked, reduced, or reversed the repression of
matrin3, contactin 1, TFPI2, MLL3, UBE3A, DHFR, and ZFR
mRNAs (Table IV). This finding suggests that simultaneous
nicotinic activation of both �7-nAChR and �3*-nAChR is re-
quired to repress these mRNAs. Third, neither antagonist pre-
vented nicotine-mediated repression of the N28268 (cDNA
DKFZ in Table IV) and PIG7 genes. However, d-TC, a general
nAChR antagonist, prevented nicotinic effects on expression of
these genes, suggesting that signaling through either �7- or
�3*-nAChR is sufficient to affect expression of these messages.
Nevertheless, we cannot currently rule out either of the possi-
bilities that the 20% of active �3�4-nAChR that remain func-
tional in the presence of 3 �M mecamylamine are sufficient to
regulate these genes or that additional �3* subtypes may reg-

ulate these genes. Fourth, the three nAChR antagonists alone
were able to alter the expression of some of the genes identified
(see Tables II–IV for a summary of results). Although there is
a formal possibility that antagonists could be affecting ongoing
non-nAChR signaling that modulates gene expression, this
result implies that there exists a nAChR-dependent pathway to
repress gene expression that is independent of nAChR channel
opening.

The assessment in this study of effects of nAChR antagonists
alone should be, but is not, routine practice. Many studies
showing the effects of antagonist plus agonist treatments, such
as blockade of or failure to block nicotinic agonist effects and
synergy with nicotinic agonist effects, need to be replicated
with concomitant assessments of antagonist effects alone to
help elucidate the bases for ligand actions. Had our studies not
examined the effects of antagonists alone, interpretation of the
results would have been misleadingly simplified.

What Are the Signaling Pathways Leading from nAChR Ac-
tivation to Altered Gene Expression?—Our data suggest that at
least two initial nAChR-mediated signals can modulate gene
expression. Although d-TC blocked the majority of the effects of
nicotine on gene expression, the levels of several mRNAs were
affected by d-TC alone, and this effect was not reversed when
nicotine and d-TC were used in conjunction. For DHFR, d-TC
repressed expression comparably to nicotine. For contactin 1,
matrin3, and UBE3A, d-TC elicited an increase in mRNA lev-
els, whereas nicotine reduced mRNA levels. Additionally, �-co-
bratoxin and mecamylamine alone affected the expression of
multiple genes. These observations suggest several possibili-
ties. First, there may be at least two nAChR-dependent signal-
ing pathways. One pathway may be dependent on channel
opening and subsequent ion flow, and a second pathway may be
activated by changes in nAChR conformation that result from
either agonist or antagonist binding. In support of the first
possibility, �7-nAChR are highly permeable to calcium, and in
the SH-SY5Y cell, activation of �7-nAChR has been shown to
activate the extracellular signal-regulated kinase 1/2 through a
calcium-dependent mechanism (16). Nicotine has been shown
to activate this pathway, which ultimately affects gene expres-
sion. In contrast, the observation that antagonists alone can
significantly repress expression of some genes supports the
view that alternative conformational states of the nAChR can
affect the expression of some genes. Previous studies have not
determined the effects of nAChR antagonists on activation of
the MAPK pathway. It is therefore unclear whether mecamyl-
amine, d-TC, or �-cobratoxin could activate the MAPK sig-
naling pathway, thereby possibly explaining their effects on
gene expression through a common signaling pathway.

Could Changes in Contactin 1 mRNA Levels Be Involved in
Nicotine-induced nAChR Up-regulation?—One of the interest-
ing aspects of nAChR function is the phenomenon of up-regu-
lation. When SH-SY5Y cells are continuously exposed to nico-
tine, there is an early transient decrease in the total number of
assembled, cell surface nAChR that display radioligand bind-
ing. However, numbers of total radioligand-binding sites in-
crease immediately, reflecting an increase in intracellular
pools (22). Over time, the decline in surface receptor numbers
reverses, perhaps reflecting renewal and then later up-regula-
tion of cell surface pools replenished from the increased intra-
cellular pool of precursors. The mechanisms underlying this
response are poorly understood.

Nicotine treatment significantly reduced the expression of
the contactin 1 mRNA in as little as 1 h (Tables I and II and
Fig. 2). Contactin physically interacts with many different pro-
teins on the cell surface, including voltage-gated Na� channels
(26, 27), protein-tyrosine phosphatase receptors (25, 47–49),

TABLE IV
Summary of nicotine treatment-induced gene expression changes and

their sensitivity to blockade by nicotinic antagonists
RT-PCR results from Tables II and III are grouped based on the

effects of various antagonists and according to gene name (column 1);
effect of nicotine, d-TC, �-cobratoxin (cbtx), or mecamylamine (meca)
alone (columns 2–5, respectively); or effect of nicotine in the presence of
d-TC, �-cobratoxin, or mecamylamine (columns 6–8 under the horizon-
tal bar labeled Nicotine above). Group 1: Gene expression changes in
response to nicotine that are either blocked or reversed by d-TC, �-co-
bratoxin, or mecamylamine. Group 2: Gene expression changes that are
blocked by either d-TC or cbtx. Group 3: Gene expression changes that
are blocked or reversed by d-TC only. The 1 indicates significant
induction alone. The 2 indicates significant repression alone. � indi-
cates nicotinic effects that are significantly blocked in the presence of
the indicated antagonist. @ indicates nicotinic effects that are reversed
in the presence of the indicated antagonist. Any symbol in parentheses
indicates a trend toward the indicated effect that did not reach statis-
tical significance.
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contactin associated protein (50), and Fyn receptor tyrosine
kinase (51). Interaction of contactin with voltage-gated Na�

channels has been shown to increase the cell surface expression
of fully assembled and functional channels (26, 27). This obser-
vation suggests an intriguing possible explanation for nAChR
cell surface regulation. If contactin regulates the surface ex-
pression of nAChR in a manner similar to that of the voltage-
gated Na� channels, then one would predict that repression of
contactin 1 mRNA would result in reduced surface expression
of nAChR. Consistent with this model, contactin mRNA is
down-regulated following 1 h of nicotine exposure, a time in
which surface expression of nAChR is also significantly re-
duced. Interestingly, after 24 h of nicotine exposure surface
nAChR have returned nearly to pretreatment levels (22). This
correlates with a 1.4-fold up-regulation of contactin 1 mRNA
following 24 h of continuous exposure to 1 mM nicotine (data
not shown). Future work will be aimed at elucidating the po-
tential role of contactin 1 in the regulation of nAChR function.

Summary—Nicotine exposure has reproducible, but some-
times relatively subtle, effects on gene expression in a neuron-
like cell line. These gene expression changes can be classified
into three general groups based on the effects of nAChR antag-
onists. Further, many of these effects are pharmacologically
specific and appear to be mediated by traditional nAChR chan-
nel function. Other effects of nicotine on gene expression may
result from alternative, yet nAChR-dependent, mechanisms.
Our results demonstrate the utility of microarrays in this type
of analysis to identify candidate genes where subtle changes in
gene expression, as would be predicted to result from drug
exposure, occur. Our results also highlight some of the caveats
in interpreting the results from such an approach, emphasizing
the importance of secondarily verifying consistent changes in
gene expression. From these studies come tangible suggestions
and targets for future investigation as to how nicotine affects
gene expression in the nervous system, potentially adding to
ways in which this drug exerts its physiologically relevant
effects.
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