626 research outputs found

    Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    Get PDF
    Aims. We model the present-day population of 'classical' low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. Methods. We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results. We find a population of ~2.1 x 10^3 LMXBs with neutron star accretors. Of these about 15 - 40 are expected to be persistent (depending on model assumptions), with luminosities higher than 10^35 erg s^-1. About 7 - 20 transient sources are expected to be in outburst at any given time. Within a factor of two these numbers are consistent with the observed population of bright LMXBs in the Bulge. This gives credence to our prediction of the existence of a population of ~1.6 x 10^3 LMXBs with low donor masses that have gone through the period minimum, and have present-day mass transfer rates below 10^-11 Msun yr^-1. Conclusions. Even though the observed population of hydrogen-rich LMXBs in the Bulge is larger than the observed population of (hydrogen-deficient) UCXBs, the latter have a higher formation rate. While UCXBs may dominate the total LMXB population at the present, the majority would be very faint, or may have become detached and produced millisecond radio pulsars. In that case UCXBs would contribute significantly more to the formation of millisecond radio pulsars than hydrogen-rich LMXBs. [abridged]Comment: 8 pages, 10 figures. Accepted for publication in Astronomy and Astrophysics. v2: minor language correction

    Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics

    Full text link
    We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the Inner Lindblad Resonance radius of the primary bar, coinciding with the inner Inner Lindblad Resonance radius of the large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter

    Nanoscale Fabrication of Microwave Detectors from Commercially-Available CVD-Grown Monolayer Graphene

    Get PDF
    Using commercially-available monolayer graphene, synthesized by means of chemical vapor deposition, microwave power sensing elements have been nanofabricated and integrated with microwave-grade test structures suitable for on-wafer probing. The graphene, situated on a thermal oxide, was first cleaned of stray contaminants in a forming gas environment briefly held at 250 degrees Celsius using a rapid thermal annealer. Immediately following this step, the graphene was passivated with a protective aluminum oxide layer (approximately S nm in thickness). Micrometer-scale Corbino disc test structures were then fabricated in direct contact with the graphene using a self-aligned process, which relies on the fact that tetramethylammonium hydroxide develops the photoresist while removing the aluminum oxide. Graphene nanoribbons (with widths as small 400 nm) were then fabricated across the Corbino disc gaps using electron-beam writing in conjunction with a negative tone resist. The same developer exposed the majority of the graphene while defining nanometer-scale lines of photoresist stacked upon aluminum oxide. These stacks served as etch-stops while the unprotected graphene was ion-milled in an oxygen plasma. Finally, the photoresist was removed leaving behind passivated graphene nanoribbons. Damage caused by the fabrication was evaluated by comparing the Raman spectra of the grapheme before and after processing

    Mergers of equal-mass binaries with compact object companions from mass transfer in triple star systems

    Get PDF
    In this paper, we consider triple systems composed of main-sequence (MS) stars, and their internal evolution due to stellar and binary evolution. Our focus is on triples that produce white dwarfs (WDs), where Roche lobe overflow of an evolving tertiary triggers accretion onto the inner binary via a circumbinary disk (CBD) driving it toward a mass ratio of unity. We present a combination of analytic- and population synthesis-based calculations performed using the SeBa code to constrain the expected frequency of such systems, given a realistic initial population of MS triples, and provide the predicted distributions of orbital periods. We identify the parameter space for triples that can accommodate a CBD, to inform future numerical simulations of suitable initial conditions. We find that . 10% of all MS triples should be able to accommodate a CBD around the inner binary, and compute lower limits for the production rates. This scenario broadly predicts mergers of near equal-mass binaries, producing blue stragglers (BSs), Type Ia supernovae, gamma ray bursts and gravitational wave-induced mergers, along with the presence of an outer WD tertiary companion. We compare our predicted distributions to a sample of field BS binaries, and argue that our proposed mechanism explains the observed range of orbital periods. Finally, the mechanism considered here could produce hypervelocity MS stars, WDs and even millisecond pulsars with masses close to the Chandrasekhar mass limit, and be used to constrain the maximum remnant masses at the time of any supernova explosion.Computational astrophysic

    The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages

    Get PDF
    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species’s life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site’s mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems

    Munc18-1 promotes larger dense-core vesicle docking.

    Get PDF
    AbstractSecretory vesicles dock at the plasma membrane before Ca2+ triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was reduced 10-fold in mouse chromaffin cells lacking Munc18-1, but the kinetic properties of the remaining release, including single fusion events, were not different from controls. Concomitantly, mutant cells displayed a 10-fold reduction in morphologically docked LDCVs. Moreover, acute overexpression of Munc18-1 in bovine chromaffin cells increased the amount of releasable vesicles and accelerated vesicle supply. We conclude that Munc18-1 functions upstream of SNARE complex formation and promotes LDCV docking
    • 

    corecore