76 research outputs found

    The Loss of Functional Caspase-12 in Europe Is a Pre-Neolithic Event

    Get PDF
    Contains fulltext : 109878.pdf (publisher's version ) (Open Access)BACKGROUND: Caspase-12 (CASP12) modulates the susceptibility to sepsis. In humans, the "C" allele at CASP12 rs497116 has been associated with an increased risk of sepsis. Instead, the derived "T" allele encodes for an inactive caspase-12. Interestingly, Eurasians are practically fixed for the inactive variant, whereas in Sub-Saharan Africa the active variant is still common (~24%). This marked structure has been explained as a function of the selective advantage that the inactive caspase-12 confers by increasing resistance to infection. As regards to both when positive selection started acting and as to the speed with which fixation was achieved in Eurasia, estimates depend on the method and assumptions used, and can vary substantially. Using experimental evidence, we propose that, least in Eurasia, the increase in the frequency of the T allele might be related to the selective pressure exerted by the increase in zoonotic diseases transmission caused by the interplay between increased human population densities and a closer contact with animals during the Neolithic. METHODOLOG/PRINCIPAL FINDINGS: We genotyped CASP12 rs497116 in prehistoric individuals from 6 archaeological sites from the North of the Iberian Peninsula that date from Late Upper Paleolithic to Late Neolithic. DNA extraction was done from teeth lacking cavities or breakages using standard anti-contamination procedures, including processing of the samples in a positive pressure, ancient DNA-only chamber, quantitation of DNAs by qPCR, duplication, replication, genotyping of associated animals, or cloning of PCR products. Out of 50, 24 prehistoric individuals could finally be genotyped for rs497116. Only the inactive form of CASP12 was found. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the loss of caspase-12 in Europe predates animal domestication and that consequently CASP12 loss is unlikely to be related to the impact of zoonotic infections transmitted by livestock

    The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity

    Get PDF
    Open Access funded by Wellcome Trust: Under a Creative Commons license Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Acknowledgments We would like to thank S. Hardison, P. Redelinghuys, J. Taylor, C. Wallace, A. Richmond, S. Hadebe, A. Plato, F. Abbass, L. Fick, N. Allie, R. Wilkinson, K. Wilkinson, S. Cooper, D. Lang, and V. Kumar for reagents and assistance, and the animal facility staff for the care of our animals. This work was supported by the MRC (UK) and Wellcome Trust (G.D.B.); MRC (South Africa) and Sydney Brenner Fellowship (M.J.M.); Vici (M.G.N.), Vidi (R.v.C.), and Veni grants (T.S.P.) from the Netherlands Organization for Scientific Research; the Royal Netherlands Academy of Arts and Sciences (T.H.M.O.); EC FP7 projects (NEWTBVAC, ADITEC; T.H.M.O.); Carnegie Corporation and CIDRI (J.C.H.); and the University of Aberdeen (B.K.).Peer reviewedPublisher PD

    Genetic Association Analysis of the Functional c.714T>G Polymorphism and Mucosal Expression of Dectin-1 in Inflammatory Bowel Disease

    Get PDF
    Contains fulltext : 80614.pdf (publisher's version ) (Open Access)BACKGROUND: Dectin-1 is a pattern recognition receptor (PRR) expressed by myeloid cells that specifically recognizes beta-1,3 glucan, a polysaccharide and major component of the fungal cell wall. Upon activation, dectin-1 signaling converges, similar to NOD2, on the adaptor molecule CARD9 which is associated with inflammatory bowel disease (IBD). An early stop codon polymorphism (c.714T>G) in DECTIN-1 results in a loss-of-function (p.Y238X) and impaired cytokine responses, including TNF-alpha, interleukin (IL)-1beta and IL-17 upon in vitro stimulation with Candida albicans or beta-glucan. The aim of the present study was to test the hypothesis that the DECTIN-1 c.714T>G (p.Y238X) polymorphism is associated with lower disease susceptibility or severity in IBD and to investigate the level of dectin-1 expression in inflamed and non-inflamed colon tissue of IBD patients. METHODOLOGY: Paraffin embedded tissue samples from non-inflamed and inflamed colon of IBD patients and from diverticulitis patients were immunohistochemically stained for dectin-1 and related to CD68 macrophage staining. Genomic DNA of IBD patients (778 patients with Crohn's disease and 759 patients with ulcerative colitis) and healthy controls (n = 772) was genotyped for the c.714T>G polymorphism and genotype-phenotype interactions were investigated. PRINCIPAL FINDINGS: Increased expression of dectin-1 was observed in actively inflamed colon tissue, as compared to non-inflamed tissue of the same patients. Also an increase in dectin-1 expression was apparent in diverticulitis tissue. No statistically significant difference in DECTIN-1 c.714T>G allele frequencies was observed between IBD patients and healthy controls. Furthermore, no differences in clinical characteristics could be observed related to DECTIN-1 genotype, neither alone, nor stratified for NOD2 genotype. CONCLUSIONS: Our data demonstrate that dectin-1 expression is elevated on macrophages, neutrophils, and other immune cells involved in the inflammatory reaction in IBD. The DECTIN-1 c.714T>G polymorphism however, is not a major susceptibility factor for developing IBD

    STAT1 Hyperphosphorylation and Defective IL12R/IL23R Signaling Underlie Defective Immunity in Autosomal Dominant Chronic Mucocutaneous Candidiasis

    Get PDF
    We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism. Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel strategies for the treatment of this severe immunodeficiency

    Author Correction:GWAS of thyroid stimulating hormone highlights the pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    The original version of this article contained an error in the results, in the second paragraph of the subsection entitled “Fine-mapping for potentially causal variants among TSH loci”, in which effect sizes for two variants were incorrectly reported

    Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia

    Get PDF
    Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 x 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 x 10(-10); OR = 4.25) and TAGAP (P = 1.84 x 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe
    corecore