1,014 research outputs found

    Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Get PDF
    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) (1Δ←1Σ+) transition, with a new weak transition assigned to (1Σ−←1Σ+) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to 1Σ+ and 1Π transitions. Based on our recent measurements of differential cross sections for the optically allowed (1Σ+ and 1Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

    Prospects for improving the sensitivity of KAGRA gravitational wave detector

    No full text
    KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios

    Artificial Brain for the Humanoid-Nurse Robots of the Future: Integrating PsyNACS© and Artificial Intelligence

    Get PDF
    Robots in healthcare are being developed rapidly, as they offer wide-ranging medical applications and care solutions. However, it is quite challenging to develop high-quality, patient-centered, communication-efficient robots. This can be attributed to a multitude of barriers such as technology maturity, diverse healthcare practices, and humanizing innovations. In order to engineer an ideal Humanoid-Nurse Robots (HNRs), a profound integration of artificial intelligence (AI) and information system like nursing assessment databases for a better nursing care delivery model is required. As a specialized nursing database in psychiatric hospitals, the Psychiatric Nursing Assessment Classification System and Care Planning System (PsyNACS©) has been developed by Ito et al., to augment quality and safe nursing care delivery of psychiatric health services. This chapter describes the nursing landscape in Japan, PsyNACS© as a specialized nursing database, the HNRs of the future, and the future artificial brain for HNRs linking PsyNACS© with AI through deep learning and Natural Language Processing (NLP)

    Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors: A review of the state of the art

    Full text link
    In this Perspective we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented in a workshop{\dag} bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains, while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes, as well as optical metrology on large-area (~10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise AlGaAs mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these novel materials.Comment: 13pages, 3 figure

    Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells

    Get PDF
    purpose. Simian virus (SV)40–immortalized human corneal epithelial (HCE-T) cells have been widely used as an in vitro model of human corneal epithelial cells. The nature of this cell line was assessed for genomic aberrations and cellular heterogeneity. methods. For the quantitative measurement of genomic aberrations, array-based comparative genomic hybridization (CGH) analysis was performed. For identification of cellular heterogeneity, cell morphology, growth kinetics, transepithelial electrical resistance, and transfection/transcriptional efficiency were analyzed. Real-time PCR and chromosomal fluorescent in situ hybridization (cFISH) against some gained or lost loci were performed, to assess genomic heterogeneity. Expressed sequence tags (ESTs) for this cell line were collected to assess differences in the gene expression profiles between HCE-T cells and normal corneal epithelial cells. Southern blot analysis and inverse PCR analyses were used to determine the genomic integration site of the SV40 large T antigen gene (LTAG). results. Array CGH analysis demonstrated that the genomic content of HCE-T cells is different from the normal healthy genome. The results from cellular functional assays, real-time PCR, and cFISH strongly indicated that HCE-T cells consist of a significant number of heterogeneous cell populations. The genomic integration site of the SV40 large T antigen was at p22.1 of chromosome 9. conclusions. The results indicate that HCE-T cells have an altered genomic content and that they are composed of heterogeneous cell populations. This should be considered when conducting experiments or interpreting the results of studies that use this cell line

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites

    Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer

    Get PDF
    Purpose: Response to a complex trastuzumab-based regimen is affected by multiple features of the tumor and its microenvironment. Developing a predictive algorithm is key to optimizing HER2-targeting therapy. Experimental Design: We analyzed 137 pretreatment tumors with mRNA-seq and DNA exome sequencing from CALGB 40601, a neoadjuvant phase III trial of paclitaxel plus trastuzumab with or without lapatinib in stage II to III HER2-positive breast cancer. We adopted an Elastic Net regularized regression approach that controls for covarying features within high-dimensional data. First, we applied 517 known gene expression signatures to develop an Elastic Net model to predict pCR, which we validated on 143 samples from four independent trials. Next, we performed integrative analyses incorporating clinicopathologic information with somatic mutation status, DNA copy number alterations (CNA), and gene signatures. Results: The Elastic Net model using only gene signatures predicted pCR in the validation sets (AUC ¼ 0.76). Integrative analyses showed that models containing gene signatures, clinical features, and DNA information were better pCR predictors than models containing a single data type. Frequently selected variables from the multiplatform models included amplifications of chromosome 6p, TP53 mutation, HER2-enriched subtype, and immune signatures. Variables predicting resistance included Luminal/ERþ features. Conclusions: Models using RNA only, as well as integrated RNA and DNA models, can predict pCR with improved accuracy over clinical variables. Somatic DNA alterations (mutation, CNAs), tumor molecular subtype (HER2E, Luminal), and the microenvironment (immune cells) were independent predictors of response to trastuzumab and paclitaxel-based regimens. This highlights the complexity of predicting response in HER2-positive breast cancer
    corecore