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Purpose: Response to a complex trastuzumab-based regimen is affected by multiple features of 

the tumor and its microenvironment. Developing a predictive algorithm is key to optimizing 

HER2-targeting therapy.

Methods: We analyzed 137 pre-treatment tumors with mRNA-seq and DNA exome sequencing 

from CALGB 40601, a neoadjuvant phase III trial of paclitaxel plus trastuzumab with or without 

lapatinib in stage II-III HER2-positive breast cancer. We adopted an Elastic Net regularized 

regression approach that controls for co-varying features within high-dimensional data. First, we 

applied 517 known gene expression signatures to develop an Elastic Net model to predict pCR, 

which we validated on 143 samples from 4 independent trials. Next, we performed integrative 

analyses incorporating clinicopathologic information with somatic mutation status, DNA copy 

number alterations (CNAs) and gene signatures.

Results: The Elastic Net model using only gene signatures predicted pCR in the validation sets 

(AUC = 0.76). Integrative analyses showed that models containing gene signatures, clinical 

features, and DNA information were better pCR predictors than models containing a single data 

type. Frequently selected variables from the multi-platform models included amplifications of 

chromosome 6p, TP53 mutation, HER2-enriched subtype and immune signatures. Variables 

predicting resistance included Luminal/ER+ features.

Conclusions: Models using RNA only, as well as integrated RNA and DNA models, can predict 

pCR with improved accuracy over clinical variables. Somatic DNA alterations (mutation, CNAs), 

tumor molecular subtype (HER2E, Luminal), and the microenvironment (immune cells) were 

independent predictors of response to trastuzumab and paclitaxel-based regimens. This highlights 

the complexity of predicting response in HER2-positive breast cancer.
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INTRODUCTION

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in ~25% of breast 

cancers. The anti-HER2 antibody trastuzumab reduces mortality in stage I-III disease by 

37% when combined with adjuvant chemotherapy. However, approximately one-fourth of 

these patients experience recurrence within 10 years and ultimately succumb to their 

disease(1). Additional HER2-targeting drugs including lapatinib(2), pertuzumab(3), and 

neratinib(4) have been tested in combination with or following trastuzumab in patients with 

stage I – III HER2-positive breast cancer, with variable impacts on disease-free survival in 

terms of statistical significance but all with modest (less than 3%) absolute effects. These 

results clearly highlight our need to identify those in whom additional therapy is warranted. 

The MINDACT and similar trials suggest that genomic classifiers may help identify patients 

with HER2-negative disease who may be treated with less aggressive regimens(5). The 

identification of a biologic classifier for tailoring therapy in HER2-positive disease would 

also be very valuable.

It is equally true that HER2-positive breast cancer is highly molecularly heterogeneous. 

CALGB 40601(6), and the similar trial NeoALTTO(7), have revealed that gene expression 
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signatures of ESR1 and HER2, molecular intrinsic subtype, and immune cell activation are 

associated with pathological complete response (pCR). Several molecular alterations are 

thought to contribute to trastuzumab resistance, including PIK3CA mutation(6,8,9), PTEN 

loss(10,11), and TP53 mutation(12,13), but these possible biomarkers have been 

inconsistent. In NeoALLTO, mutations in the RhoA pathway were associated with response, 

which has not yet been further examined(14). In addition to tumor influences, immune cell 

gene expression has been independently associated with pCR(6,7), and in retrospective/

prospective trials, tumor infiltrating lymphocytes (TILs) have been predictive of trastuzumab 

benefit(15,16). Currently, HER2 overexpression and/or amplification remains the only 

clinically validated marker to select patients for anti-HER2 therapies.

A number of studies including The Cancer Genome Atlas(17,18) have produced a wealth of 

genomic data and described disease mechanisms. However, there are still two major 

challenges when using clinical trial samples: First, most research studies characterize a 

genomic feature type, such as gene expression, mutation, or copy number, and there are few 

capable of integrating disparate data types that reflect the continuum of cancer biology and 

are simultaneously able to address clinical outcomes. Second, because these studies did not 

utilize samples from prospective clinical trials with prespecified endpoints, they are poorly 

suited to identify or validate novel predictive biomarkers.

By contrast, in this study we utilized two computational approaches of integrative data 

analysis, namely Elastic Net and DawnRank, using the samples obtained from Cancer and 

Leukemia Group B (CALGB) 40601(6), a prospective phase III trial of neoadjuvant 

chemotherapy with trastuzumab, lapatinib or both. In this analysis, we first developed an 

Elastic Net model from gene expression data and applied the model onto four different 

validation datasets. In addition, after combining mutation, DNA copy number alterations, 

and gene expression data with known clinical features, we developed objective 

computational models to identify important determinants of response to trastuzumab-based 

therapy. Our goal was to develop an accurate predictor of response, and at the same time, to 

learn more about the biology of therapeutic response in HER2-positive breast tumors.

PATIENT AND METHODS

CALGB 40601 Study Design and Patients

The study design and clinical results have been previously published(6); CALGB 40601 is 

now part of the Alliance for Clinical Trials in Oncology. A total of 305 women with stage II-

III HER2-positive disease were randomized to receive paclitaxel (T) at 80 mg/m2 weekly for 

16 weeks, with trastuzumab (H, 4 mg/kg loading dose followed by 2 mg/kg), lapatinib (L, 

1500 mg/d), or both (L at 1000 mg/d plus the same dose of H) for 16 weeks. The TL arm 

was closed early based on reports of inferiority and greater toxicity; given that single agent 

lapatinib is not a clinically relevant treatment and the mechanism of action differs 

systematically from conventional H or H+L-based therapy, the TL arm was excluded from 

this analysis. The primary endpoint was pCR, defined as no invasive tumor in the breast, 

which is a surrogate endpoint of survival in HER2-positive breast cancer(19).

Tanioka et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tumor genomic methods

Participants underwent 4 pretreatment 16-gauge core biopsies: 2 cores were placed into 

RNA stabilization product (RNALater™Qiagen, Hilden, Germany), and 2 were placed into 

10% neutral buffered formalin. CALGB 40601 enrolled 305 patients. Figure 1-A shows the 

CONSORT diagram for the subset studied here on the genomic level. We eliminated from 

analysis those patients in whom the RNA or DNA quality was inadequate, those treated on 

the non-trastuzumab arm (TL), and those with Normal-like intrinsic subtype, which consists 

mostly of normal tissues. The final training set consisted of 137 patient samples from TH 

(n= 68) and THL (n= 69) arms; all received trastuzumab-paclitaxel regimens. All 137 

patients signed an IRB-approved, protocol-specific informed consent document in 

accordance with federal and institutional guidelines. This document included consent for the 

use of RNA and DNA; the consent also covered future biomarker research. DNA exome 

sequencing was performed at McDonnell Genome Institute (Washington University) and 

RNA-seq was performed at the UNC High Throughput Sequencing Facility (University of 

North Carolina). The patient and tumor characteristics of the included samples did not differ 

significantly from the total dataset (N = 285) including stage, hormonal receptor status, and 

pCR rates (data not shown).

Gene expression and signatures

Gene expression profiles were generated by mRNA-sequencing using an Illumina HiSeq 

2000 as described in Ciriello et al.(17). Briefly, mRNAseq libraries were made from total 

RNA using the Illumina TruSeq mRNA sample preparation kit and sequenced on an 

Illumina HiSeq 2000 using a 2×50bp configuration with an average of 136 million reads per 

sample. Quality-control-passed reads were aligned to the human reference genome (hg19) 

using MapSplice(20). The alignment profile was determined by Picard Tools v1.64 (http://

broadinstitute.github.io/picard/). Aligned reads were sorted and indexed using SAMtools 

and translated to transcriptome coordinates then filtered for indels, large inserts, and zero 

mapping quality using UBU v1.0 (https://github.com/mozack/ubu). Transcript abundance 

estimates for each sample were performed using RSEM, an expectation-maximization 

algorithm(21) using the UCSC knownGene transcript and gene definitions. Raw RSEM read 

counts for all mRNAseq samples were normalized to a fixed upper quartile.

Next, PAM50 subtyping was applied to the gene expression data using a two-step 

normalization process based on the TCGA(17) cohort as previously described(6). We next 

applied a collection of 517 gene expression signatures, representing multiple biological 

pathways and cell types, to all 137 samples. These 517 signatures (all published) were 

obtained from 73 publications or Gene Set Enrichment Analysis (GSEA)(22) and partially 

summarized by Fan, et al.(23) (see eTable 1 for the complete list of signatures and their 

associated references). Using the combined normalized data set with the TCGA data, we 

applied each signature to the data set in a manner consistent with their derivation. For 478 

signatures with homogenous expression across genes within a given set, these represent 

coordinately regulated sets of either “up” genes, or sets of “down” genes. All the genes were 

moving in the same direction, therefore we took the median expression value for all genes in 

a signature. For 39 signatures where gene expression patterns were not homogenous, we 

calculated correlations to predetermined centroids using previously published training 
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datasets/centroids, or used predetermined special algorithms following their original 

methods.

Mutation data

We performed hybrid capture exome sequencing on 137 of the tumors (Nimblegen v3.0 

SeqCap reagent) and matched peripheral blood mononuclear cells (PBMC) sequenced to 

average 100x depth coverage using paired-end 2×100bp. Raw sequences were aligned using 

the BWA-mem algorithm, and refined using our Assembly Based Re-Alignment (ABRA)

(24) process to allow for accurate alignment of complex sequence variation. Somatic 

mutation detection was performed by integrated whole DNA exome and mRNAseq using the 

UNCeqR analytic tool as previously described(25,26).

Copy number variants

Copy number variation across the genome was determined as follows: The sequence reads 

were aligned to the genome (hg 19) using the bwa-mem algorithm (https://github.com/lh3/

bwa; v0.7.4) with the default parameters. Duplicates were removed using Picard (http://

broadinstitute.github.io/picard/). Quality statistics were also generated with Picard including 

measures of fragment length, sequence content, alignment, capture bias and efficiency, 

coverage, and variant call metrics. Copy number assessments were performed using 

SynthEx(27). In brief, counts data for fixed 100kb bins were generated using BEDTools(28). 

The read ratios were calculated using the “synthetic normal” strategy described in SynthEx. 

A trending filter procedure was applied to segment the genome. The segment-level copy 

number values, which are the log2 ratios of normalized signal intensities between tumor and 

controls, were finally corrected by purity and ploidy estimates from SynthEx, taking whole 

genome doubling into account for these values. These segment-level values were changed 

into gene-level values using Switchplus(29), and then we re-calculated the values for 536 

predetermined cancer-specific segments (eTable 2) that are frequently altered in multiple 

types of cancer including breast cancers(30,31); we also calculated chromosome arm based 

values and included these as features (48 segments). DNA Copy number values derived from 

exome sequencing were compared with those from SNP6.0 among the TCGA samples(17) 

with ploidy 1.75 – 2.5, then the thresholds for gain or loss from exome-derived SynthEx 

values were determined as 0.25 or −0.32, respectively(27); we applied these thresholds to 

copy number values on the CALGB 40601 samples to call gained and lost segments.

The complete list of DNA mutation somatic variants, DNA copy number segment, and gene 

expression values from CALGB 40601 samples are provided in Supplementray Data Files 

1–3. The accession number for the RNAseq data for CALGB 40601 is GSE116335. Exome 

data for CALGB 40601 cohort is available via the NCBI dbGAP repository under accession 

number phs001570.v1.

Statistical analyses

All statistical analyses were performed using R version 3.1.2. All analyses were based on the 

study database frozen on January 29, 2016.
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Elastic Net analysis—For feature selection using a multivariate modeling approach, we 

used Elastic Net (R package glmnet)(32), which is a regularized regression method that 

linearly combines the L1 and L2 penalties of the Ridge Regression and Least Absolute 

Shrinkage and Selection Operator (LASSO)(33). Monte-Carlo cross-validation(34) (R 

package caret) was conducted using 200 different training sets randomly selected from the 

137-sample training set. Models were built to predict pCR in the training set, selecting 

lambda values over a grid of alpha values from 0.1 to 1 by 0.1 increments via 10-fold cross 

validation(35) (R package glmnet). Then we calculated accuracy, which equals (sensitivity + 

specificity) / 2, for each parameter combination. We identified the optimal parameter 

combination with the highest accuracy during cross-validation, and applied this to the final 

model using the best parameter combination onto the test set, and then constructed ROC 

curves and evaluated area under ROC (AUC). The variables with a high or low (negative) 

coefficient value would be associated with response or resistance to trastuzumab-containing 

therapy, respectively.

There were two purposes for the Elastic Net analyses, namely model-building and biological 

discovery through feature selection. First, we wished to evaluate the robustness of the Elastic 

Net model and use of this approach for pCR prediction. We developed the predictive model 

using 137 tumors from the CALGB 40601 training set and validated it using gene expression 

datasets from an independent group of 143 patients who participated in four clinical trials of 

neoadjuvant chemotherapy plus trastuzumab for patients with HER2-positive breast cancer 

on whom high-quality gene expression data were available. These included 43 patients in 

CHERLOB(8) who received anthracycline, taxane, and trastuzumab, with or without 

lapatinib; 24 patients in XENA(36) who received capecitabine, taxane, and trastuzumab; 10 

patients in I-SPY1(37) who received anthracycline, taxane, and trastuzumab; and 66 patients 

from the CALGB 40601 independent validation set who received taxane and trastuzumab 

with or without without lapatinib, but who were not included in the training set (because the 

training set was limited to those with RNA and DNA genomics). All the patients received at 

least trastuzumab and taxane. Supplementary Figure 1-A diagrams the overall process of the 

Elastic Net model development and evaluation. In more detail, the gene signature data of all 

137 samples from the CALGB 40601 training set were used as the training dataset to 

construct a model for an expression-only pCR prediction. This model was applied to 

CHERLOB, XENA, I-SPY, the CALGB 40601 independent validation set and all four test 

sets combined to construct ROC curves and evaluate AUC.

Second, in order to identify important and novel features contributing to sensitivity and 

resistance using a multi-dimensional approach, we investigated combining mutation, DNA 

copy number, and gene expression data with known clinical features, and then used all of 

these features for Elastic Net model building. Mutation and copy number alterations (CNAs) 

were used as dichotomous and continuous variables, respectively. By balancing for 

clinicopathological features, the samples were divided into a training and a test set (R 

package sampling), then Monte-Carlo cross-validation was conducted using 200 different 

training sets randomly selected from the larger training set. We developed a set of integrated 

Elatic Net regression models to predict pCR, varying the features used as input. Because this 

component of the study was limited to available samples with both RNA and DNA data, 
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which limited sample size, the Elastic Net was performed using 10 rounds of training and 

testing. The most frequently selected features in the models were identified in order to find 

reproducible predictive features (Supplementary Figure 1-B).

Survival analysis on METABRIC samples—In order to address the behavior of these 

models in HER2-positive tumors that did not receive trastuzumab or other HER2-targeted 

agents, thereby eliminating variables unrelated to HER2-directed therapy, the Elastic Net 

gene expression-only models from CALGB 40601 were applied onto 216 HER2-positive 

tumors from the METABRIC(38) dataset from the pre-trastuzumab era. Among the 216 

patients studied, 124 did not receive either chemotherapy or HER2-targeting, and 92 

received chemotherapy without trastuzumab. The median follow-up period was 7.24 (0.15–

26.90) years. The patients were classified into three groups according to the scores derived 

from the expression only Elastic Net model, and overall survival was assessed by the 

Kaplan-Meier method.

DawnRank analysis—We used DawnRank(39), a novel computational method that uses 

within-tumor integrated analyses based upon predetermined protein-protein interactions 

networks, then populated by patient specific tumor gene expression values, and DNA 

aberrations, in order to identify those genes with DNA aberrations that have the greatest 

expression impact on the predefined networks; these Dawnrank scores are calculated on 

individual patients, then aggregated based upon groups of patients, to find individual genes 

involved in response to trastuzumab-containing therapies. Using the DawnRank predefined 

protein-protein interaction networks, we populated this network with mRNA gene 

expression data for each patient and calculated a score for each gene based upon the 

expression of the genes directly connected to it in the network. The DawnRank score(s) 

depend on the three parameters: predetermined protein-protein interaction networks, gene 

expression values for each patient, and a “damping factor” that represents the extent to 

which the ranking depends on the structure of the network. These three parameters along 

with DNA alteration status (i.e. mutation, amplification, or deletion) form the key 

components to determine “drivers” in individual samples. Log2 transformed normalized 

mRNAseq gene expression data were median-centered for each gene among 137 CALGB 

40601 samples, and further transformed to absolute value scores. Dawnrank was then run for 

each tumor with a mu = 3, which is the suggested default setting. The genes were then 

ranked according to the Dawnrank scores.

We then generated a binary matrix of 0 indicating no alteration and 1 indicating any DNA 

alteration for each gene, and examined somatically altered genes (DNA mutations and/or 

DNA alterations as described above) by applying DawnRank to the samples with pCR vs 

those without pCR according to the “percentrank” analysis mode, which aggregates the 

DawnRank results across a predefined set of samples/patients in order to find drivers based 

upon groups of patients (i.e. those with a pCR). Briefly, DawnRank applies a modified 

version of the Condorcet method(40), which is a voting scheme selecting a winning 

candidate gene by comparing every possible pair of candidate genes. Therefore a pair of 

candidate genes A and B are compared by the number of alterations in gene A that had 

higher Dawnrank scores than gene B.
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Additional Genomic Analyses

The association between pCR status and the clinicopathological variables, or mutated genes, 

were investigated using Fisher’s Exact test with Bonferroni correction. Using a two-class 

unpaired Significance Analysis of Microarrays (SAM)(41), we also conducted a 

permutation-based, supervised analysis to find features with significant correlation to pCR 

by comparing pCR samples versus non-pCR samples using gene-level DNA copy number 

data.

Hierarchical clustering was performed using centroid linkage implemented in software Gene 

Cluster 3.0(42), and the clustering result was viewed with Java Treeview v1.1.5r2(43) to 

identify patterns among the features selected in the Elastic Net models. We investigated the 

significance of gene signatures with unknown roles using the “Investigate Gene Sets” 

method of Gene Set Enrichment Analysis (GSEA, http://software.broadinstitute.org/gsea/

msigdb/annotate.jsp)(22), and also investigated gene signature scores according to PAM50 

subtype among 1100 breast cancer patients from TCGA(17). ROC/AUC curves were 

compared using R package pROC(44). DNA copy number frequency landscapes were 

generated using Swicthplus(29), which can identify segments with CNAs specific for a user-

determined set of tumors, in this case, samples with pCR vs non-pCR. Thus Switchplus 

provides a supervised method for analysing and visualizing copy number data. Switchplus is 

provided as a source script in R and available for download at: https://genome.unc.edu/

SWITCHplus/.

RESULTS

Cohort characteristics and genomic datasets

On CALGB 40601 specimens, we performed mRNAseq and DNA exomes (N=137, Figure 

1-A. We compared non-silent mutation frequencies between HER2-positive breast cancer in 

TCGA (N=145) and tumors in CALGB 40601 (N=137). Although PIK3CA and CDH1 

mutation were more frequent in TCGA HER2+, there were no differences in the list of 

somatically mutated genes between these two studies after Bonferroni correction 

(Supplementary Figure 2-A). We also confirmed the similarity between TCGA HER2+ and 

CALGB 40601 by comparing their DNA copy number frequency landscapes 

(Supplementary Figure 2-B), and again the results showed very high similarity. Among 

10816 non-silent mutations found through exome sequencing of 137 CALGB 40601 tumors, 

5106 mutations (47.2%) were detected in the mRNAseq of the corresponding tumors by 

UNCeqR(26). This frequency is comparable to the 51% frequency seen when performing 

the same analysis using 871 TCGA lung and breast cancer samples(26).

Among the 137 samples studied on the genomic level in CALGB 40601, clinical estrogen 

receptor (ER) or progesterone receptor (PgR) status and intrinsic subtype by PAM50 were 

associated with pCR (Figure 1-B). eTable 3 shows the list of somatically mutated genes with 

a frequency of >4%, and where only 8 genes occurred in ≥10 patients (≥7 %), and only 

TP53 mutation status was associated with pCR after Bonferroni correction (eTable 3). 

Interestingly, there were 4 patients with HER2 somatic mutations, including 2 with a variant 

allele frequency of greater than 10%; these two included a V777L variant, and a L755S 
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variant. The V777L variant is predicted to be activating and sensitive to lapatinib(45); this 

patient was in the THL arm and achieved a pCR. The L755S variant is predicted to be 

transforming, but insensitive to lapatinib; this patient was in the TL arm and had residual 

disease after therapy. As a resource, multiple individual data type supervised analyses were 

performed on the 40601 training data set and present as eTable 4; these include results of the 

supervised analyses using individual gene expression values, gene signatures, DNA 

segment-level copy number, or gene-level copy number data. Likewise, The supervised 

results on CALGB 40601 validation set using gene-expression and gene signatures are listed 

on eTable 5.

Gene expression based prediction of pCR using Elastic Net

We first developed genomic predictors of response to trastuzumab containing regimens using 

gene expression alone because several validation sets existed that would allow us to develop, 

then validate, a predictive model based on RNA data. Therefore, we used the Elastic Net 

method to develop a model for predicting pCR and starting with 517 published expression 

signatures applied to the 137 patient CALGB 40601 training cohort (Supplementary Figure 

1, and Table 1). Included within the positive predictive features were several well-described 

signatures including “correlation to HER2-Enriched”, two breast cancer recurrence 

predictors(46,47), and immune signatures. On the other hand, the tumor’s ER status based 

on clinical assay (cER), the signature of “correlation to luminal A” and a PgR-activity gene 

signature were negative predictors of pCR. For gene signatures of interest with unknown 

functions, we used GSEA(22) to gain insight into their function. “HS_Green18” (False 

discovery rate [FDR] = 3.3e-60) and “HS_Red19” (FDR = 2.6e-52) were correlated with the 

Luminal B signature and highly expressed in Luminal TCGA tumors(17). “HS_Red12” 

correlated with the HER2 signature in GSEA (FDR = 3.7e-115) and was highly expressed in 

TCGA HER2-Enriched tumors (Supplementary Figure 3-A to C). The optimized predictive 

model using gene expression signatures alone was applied to the CHERLOB(8), XENA(36), 

I-SPY1(37), and additional CALGB 40601 validation data sets, and all four sets combined 

(test sets). The AUC values were 0.80 (training), 0.73, 0.71, 0.83, 0.78 and 0.76 (combined); 

pCR rates in the test sets ranged from 13% in the lowest tertile scores, to 65% in the highest 

tertile (Figure 2, details in Supplementary Figure 4 and eTable 6).

Elastic Net analysis using multi-dimensional data

We hypothesized the comprehensive integration of DNA copy number aberrations and 

mutations, added to gene expression and clinical data, would further improve predictive 

ability for response to trastuzumab-based therapy. The integrated Elastic Net multi-

dimensional modeling assessed 528 DNA copy number segment values using 536 predefined 

chromosomal segments, 8 genes with somatic mutations in ≥10 patients, and the 517 gene 

expression signatures. Clinical ER and PgR status were included given consistent 

associations with pCR in HER2-positive breast cancer trials(6,7). Figure 3-A shows the 

average AUC values for each unique set of input variables in 10 rounds of repeated Elastic 

Net analysis (details in eTable 7). The model derived from the combination of gene 

signatures and CNAs yielded an AUC of 0.76, which was significantly higher than those 

from each individual data type alone (p <0.05). Gene signatures and CNAs were further 

combined with either mutation and/or clinical ER/PgR status, but the AUC values did not 
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change significantly. The integrated Elastic Net models largely overlapped the signatures 

identified in the gene signatures-only model (Table 1). We finally selected the combination 

of gene signatures, CNAs, mutation and clinical ER/PgR status with the average AUC of 

0.75 as the model to most fully explore, because of its objective integration of multiple data 

types, including TP53 mutation(25), and ER status(7), which have been previously reported 

as pCR predictors in patients receiving trastuzumab-based regimens. Using serial rounds of 

training and testing, we identified 33 features that contributed to ≥6 out of the 10 rounds of 

Elastic Net models using this combination of many distint feature types (Figure 3-B, all 

features in eTable 8). Included within the most frequently selected positive predictors in the 

integrated analysis were CNAs at chromosome (Chr.) 6p, TP53 mutation status, the 

signatures of Correlation to HER2-Enriched, 21-gene Recurrence Score(46), and 2 immune 

signatures of B-cells. On the other hand, clinical ER status, the signature of Correlation to 

Luminal A and of PgR-activity remained as negative predictors.

We further conducted supervised clustering of the 33 features among the 137 samples 

(Figure 4). The features were clustered into two dendrogram nodes according to positive or 

negative predictors of pCR. The positive features were further aggregated by DNA copy 

number segments at 6p and 22q, and a grouping of the recurrence predictors, TP53 mutation 

status, and HER2 signatures. Estrogen-related features as negative predictors including 

clinical ER status, PgR signature and Correlation to Luminal A, were also clustered together. 

The samples were next ordered by their average scores derived from the 10 rounds of Elastic 

Net modeling. The model scores were highly correlated with pCR (logistic regression odds 

ratio, 1.6; p < 0.001). When samples were trichotomized into top, middle, or lower tertile 

groups of the model scores, pCR rates were 93.4%, 44.4%, and 6.5%, respectively.

Survival analysis

The Elastic Net models using gene signatures with/without mutation (i.e. TP53) plus 

ER/PgR from CALGB 40601 (Table 1 and eTable 9) were applied onto 124 HER2-positive 

tumors from the METABRIC(38) dataset who did not receive any chemotherapy or 

trastuzumab, and onto 92 HER2-positive tumors from METABRIC(38) who received 

chemotherapy but no trastuzumab from the pre-trastuzumab era. Neither of these two 

models was prognostic (Supplementary Figure 5-A and 5-B) suggesting that these models 

largely reflect prediction of response to HER2-targeting.

DawnRank analysis

We next ran DawnRank(39), a computational method that uses RNA expression to populate 

known protein-protein networks, to identify those genetic alterations that alter these 

networks the most. Using the protein-protein networks comprising 8,248 genes and 

aggregating the individual patient results based upon those with a pCR and those without a 

pCR (eTable 10), we sought to identify the genetic drivers of response and resistance. HER2 
and TP53, which are regarded as major genetic drivers in breast cancer, were ranked as No.1 

or 2 in both pCR and non-pCR samples, supporting the robustness of the analysis, and the 

importance of TP53 regardless of treatment and response. Next, we extracted the top 1% of 

the genes from these rankings, then further ranked these genes according to the extent of 

rank change between pCR and non-pCR samples in order to identify those genes that qualify 
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as drivers differentially present in either responsive (pCR) or resistant (non-pCR) tumors 

(eTable 11). Among pCR samples, amplified Chr.6p genes were highly ranked compared 

with non-pCR samples, while deleted Chr.11q genes were highly ranked in non-pCR 

samples compared with pCR samples.

Identification of gene-level CNAs as candidate biomarkers of trastuzumab resistance/
sensitivity

By comparing the DNA copy number landscape plots of pCR vs non-pCR samples (Figure 

5-A), we found that gain of Chr.6p12–21 were more frequent in pCR samples, while loss of 

Chr.22q11–13 were more frequent in non-pCR samples. We next performed computational 

analysis to find common drivers between 1) copy number altered genes in segments 

contributing to ≥6 out of the 10 Elastic Net models, 2) the top 1% copy number-altered 

genes from the DawnRank, and 3) copy number-altered genes with FDR ≤ 1% from SAM 

analysis (eTable 4). Only MAPK14 and CDKN1A at Chr.6p were identified in all three 

analyses (Figure 5-B, overlapped genes are listed in eTable 12). This small amount of 

overlap between the Dawnrank results and other analyses may be because Dawnrank is 

limited to the 8000 genes in the protein-protein interaction network, or other unknown 

reasons. Further only MAPK14 had a Pearson correlation ≥0.3 between RNA gene 

expression and DNA copy number values (MAPK14, 0.38 and CDKN1A, −0.08). Therefore, 

amplification of wild type MAKP14 (also known as p38), may play a direct role in 

sensitivity to trastuzumab/paclitaxel-based regimens, but experimental validation is needed.

DISCUSSION

To our knowledge, this study represents one of the first multi-dimensional genomic analyses 

to integrate DNA mutations, DNA copy number aberrations, and RNA transcriptional 

expression with clinical variables using prospectively collected frozen tissue samples from a 

Phase III trial to predict the primary endpoint of the parent trial, pCR. The importance of 

this approach was suggested at the time we published the primary multivariable analysis of 

CALGB 40601, in which we found that treatment arm was associated with pCR, but also 

that gene signatures representing tumor and microenvironmental influences, such as intrinsic 

subtype and signatures representing activated B-cells, each independently and significantly 

contributed to pCR, regardless of treatment arm; similar results were found in NeoALTTO, 

but integrated models were not developed6,7. We found that the most highly correlated 

negative predictive variables included signatures of the luminal subtypes(7,48), which have 

been consistently reported as negative pCR predictors and were again in this multi-signature 

model, while the HER2-enriched subtype(7,48) and activated immune signatures(7) were 

positive predictors here and in other neoadjuvant trials. These commonalities across studies 

support the robustness of our results. The predictive model based on gene signatures alone 

achieved good AUC values of 0.76 (0.71 – 0.83) in the four validation datasets. In actual 

performance, the low model score tumors had a pCR rate of 13%, and given the association 

of residual disease with poor outcome, these are tumors that may need additional therapies 

to achieve higher pCR rates and better outcomes. Conversely, the group with high model 

scores showed a high response rate of 65%, suggesting that most of these tumors may be 

receiving adequate treatment with trastuzumab and paclitaxel (Figure 2). Because all 137 
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patients used for this analysis received at least paclitaxel plus trasuzumab, it is difficult to 

separate our predictive features for responsiveness to either paclitaxel or trastuzumab. 

However, this combination is part of standard neoadjuvant chemotherapy regimens for stage 

II – III HER2-positive breast cancer and is an accepted and low toxicity regimen known to 

provide distant-disease free survival in excess of 98% for stage I HER2-positive breast 

cancer(49). It is worth noting that in the one prognostic dataset available, the Elastic Net 

models were not prognostic in either HER2-positive patients who did not receive 

chemotherapy nor those who received chemotherapy without trastuzumab. These results 

suggest that our Elastic Net predictors are not prognostic but truly predictive of drug 

response. An algorithm integrating relevant genomic predictors, with clinical features, may 

therefore allow us to safely de-escalate therapy in appropriate patients just as we do with 

hormone receptor-positive, HER2-negative patients by using commercial genomic assays.

Much of precision medicine is founded upon linking somatic mutations to targeted 

treatments, however, we found only 8 genes mutated in ≥10/137 patients; we did find two 

high VAF HER2 mutants, where one achieved a pCR and the other did not, thus 

foreshadowing the complexities of predicting response in single target based “basket 

studies”(50). These overall mutation results are comparable to those from a similar 

neoadjuvant study(14) in which only PIK3CA mutation was associated with lower pCR 

rates. In our study, only TP53 gene mutation was associated with higher pCR rates with 

support from two p53 mutation signatures also selected in the Elastic Net approach. 

Additional encouraging data arose from copy number evaluations; both the Elastic Net and 

DawnRank analyses made use of the multi-dimensional genomic data and found gain of Chr.

6p as a key determinant of sensitivity to trastuzumab-based regimens. Further analysis on 

the gene-level copy number basis identified amplification of MAPK14 at Chr.6p as being 

linked to a high likelihood of pCR (Figure 5). The p38 MAPK pathway is activated upon 

cellular stress and engages pathways that can promote apoptosis(51). Activation of p38 

MAPK pathway impaired mammary carcinogenesis in a HER2-positive mouse model(52). 

Therefore, we hypothesized that trastuzumab-paclitaxel regimens cause stress and that 

MAPK14 amplification may lead cancer cells to undergo apoptosis and is a potential 

response biomarker for trastuzumab-paclitaxel containing regimens. We also take note of 

human leucocyte antigen (HLA) genes because Chr.6p contains all the HLA genes and both 

the Elastic Net and SAM analysis contained 11 HLA genes (Supplementary eTable 12). 

Thus, amplification of HLA genes may be involved in the immune response.

The strengths of our analyses were that these studies were performed on prospectively 

collected frozen tissue samples from a randomized Phase III trial with pCR as the primary 

endpoint. The Elastic Net gene signature-only model was tested on four different 

independent validation datasets, and the model predicted pCR with good accuracy on all 

four. Two types of integrated genomic analyses, Elastic Net and DawnRank, were performed 

to make use of the multidimensional genomic data, with similar results obtained from each. 

The weaknesses of our approach were that we lacked an independent validation set for the 

integrated RNA and DNA Elastic Net predictor, although we did test our methods using 10 

rounds of Monte-Carlo training and testing within CALGB 40601 data, and we report these 

values, that our sample size was relatively small, and that we cannot address the holy grail of 

anti-HER2 regimens without chemotherapy (although the absence of correlation with 

Tanioka et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outcome in chemotherapy-only treated independent datasets suggests that our findings 

reflect the HER2-targeted element); we would need to test these models in all-biologic 

HER2-based regimens.

Collectively, tumor genetics (mutations, CNAs), tumor mRNA subtype (HER2-enriched, 

Luminal), and the microenvironment (Bcell features) were independently predictive of 

response to trastuzumab-paclitaxel containing therapies for HER2-overexpressing breast 

cancer. Elastic Net analysis represents a promising means of developing predictors of pCR 

for clinical application in part due to its objective ability to select from amongst multiple 

data types. Additional studies are needed to fully evaluate these multi-platform predictors, 

but it is clear that integrating all the relevant data types together can improve our predictive 

abilities and may contribute to rational tailoring approaches for the treatment of HER2-

positive breast cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

Response to the increasingly complex trastuzumab-based regimens used in women with 

HER2-positive breast cancer is affected by multiple clinical and genomic features 

including immunohistochemical ER positivity, immune cell signatures, and molecular 

intrinsic subtype. Developing an integrated prediction model of pathologic complete 

response (pCR) using multi-dimensional genomic data could be key to optimizing HER2-

targeting therapy. Here, we applied 517 known gene expression signatures to develop an 

Elastic Net model with high predictive capability for pCR, which we validated in 4 

independent clinical trials. The model included HER2-enriched subtype, immune cell and 

Luminal/ER features. We further performed integrated analyses incorporating 

clinicopathologic information with somatic mutation status, DNA copy number 

alterations (CNAs), and found similar expression features and DNA amplifications of 

chromosome 6p as a strong predictors of pCR. This highlights the complexity of 

predicting response and suggests that optimal models to predict response many require 

multiple data types in addition to the standard clinical features.
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Figure1. CONSORT diagram of patient selection and characteristics.
(A) Sample flow chart to show how samples were selected. Starting with 305 patients, 

specimens were removed for multiple reasons including incomplete clinical data, low RNA 

yields, a normal-like non-tumor expression profile, being part of the TL= lapatinib and 

paclitaxel arm, thus leaving 203 patients. Of these, 137 had DNA exomes results, with this 

final 137 sample set also being split into a training and test set. (B) Clinical and intrinsic 

expression subtype characteristics with pCR rates using the 137 patient data set. P-values 
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were calculated by Chi-aquare test. TH, trastuzumab and paclitaxel arm; THL, trastuzumab, 

lapatinib and paclitaxel arm; ER, estrogen-receptor; PgR, progesterone receptor.
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Figure 2. Performance of the Elastic Net model for pCR prediction using gene signatures on 
CALGB 40601.
(A) Area under the curve (AUC) from the Receiver operating characteristic curve analysis 

were estimated for Elastic Net models using gene signatures alone in CALGB 40601. Left, 

CALGB 40601 as the training set (N = 137), AUC = 0.80; Right, All test sets combined 

(CHERLOB + XENA + I-SPY + CALGB 40601 validation set, N= 143, AUC = 0.76). 

Sensitivity and specificity values were selected using Youden’s cutpoint where the sum of 

sensitivity and specificity is maximal. Mann-Whitney-Wilcoxon test was conduct to 

calculate p-values. (B) Barplots showing results of the Elastic Net model score split into 
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three rank order groups and then comparing pCR rates for patients in CALGB 40601, or all 

test sets combined. ANOVA T-test was conducted to calculate p-values by comparing 

signature scores across all three groups.
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Figure 3. Elastic Net analysis using multi-dimensional data.
(A) Average AUC scores for various individual data type, or combined data type predictors, 

using test sets through 10 repeated Elastic Net analyses. Each bar shows the average AUC 

scores with 95% confidence intervals. (B) Frequently selected Elastic Net features coming 

from a multi-dimensional predictor. Features contributing to at least 6 out of 10 Elastic Net 

models using gene signatures, CNAs, mutations, and clinical ER/PgR status. GS, gene 

signature; CN, copy number; Mut, mutation; Gray and black bars indicate predictors which 

positively (37) and negatively (53) predict pCR; thus gray predictors are high in pCR 
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samples and black predictors are high in non-pCR samples. Yellow arrows indicate CNAs 

features at Chromosome 6p; Green arrows indicate TP53 mutation status or signatures; Pink 

arrows indicate HER2-enriched signatures; A gray arrow indicates 21-gene Recurrence 

Score; Black arrows indicate immune signatures; Blue arrows indicate Clinical ER status, 

Luminal signatures and PgR gene signature.
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Figure 4. Hierarchical clustering of multi-dimensional features associated with pCR.
Supervised clustering of the 33 selected features among 137 samples. The features were 

grouped into two clusters with positive or negative predictors. The samples from left to right 

were ordered by their average scores derived from the 10 Elastic Net models grouped into 

high, middle, and low scores.
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Figure 5. Identification of DNA copy number alterations as biomarkers of trastuzumab-
paclitaxel resistance and sensitivity.
(A) DNA copy number frequency landscape plots for pCR vs non-pCR tumors. The 

frequency of alterations in each group is indicated on the y-axis from 0 to 100 %. Segments 

of group-specific copy number gains or loss are plotted above or below the x-axis, 

respectively. Significantly different regions between pCR vs. non-pCR (t-test p<0.05 after 

Benjamini and Hochberg correction) are highlighted in red (gain) or in green (loss). (B) A 

Venn diagram comparing three types of gene-level copy number results. Genes in copy 

number segments contributing to ≥6 models out of the 10 Elastic Net testing, top 1% copy 
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number genes from the Dawnrank analysis, and copy number genes with false discovery rate 

≤ 1% from SAM analysis were plotted and identify MAPK14 and CDKN1A as possible 

driver genes for trastuzumab-paclitaxel sensitivity.
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Table 1.

Elastic Net features selected using the gene signatures only model from CALGB 40601

Feature References Coefficient

GS_HS_Green18 PMID.21214954 −0.07153

GS_HS_Red19 PMID.21214954 −0.04255

GS_Duke_Module17_PgR PMID.20335537 −0.03614

GS_JANES_Oscillation_JUND_KRT5 PMID.24658685 −0.03246

GS_MITO1 PMID.21214954 −0.02511

GS_Scorr_LumA_Correlation PMID.19204204 −0.01563

GS_MM_Green12 PMID.21214954 −0.01218

GS_MUnknown_16 PMID.21214954 −0.0108

GS_HS_Green1 PMID.21214954 −0.00953

GS_Duke_Module14_p53 PMID.20335537 −0.00605

GS_Scorr_P53_Wt_Correlation PMID.17150101 −0.00386

GS_Pcorr_NKI70_Good_Correlation PMID.11823860 −0.00307

GS_Lim2009_MatureLuminal PMID.25575446 −0.0014

GS_Chromogramin PMID.21214954 −0.00022

GS_Unknown_12 PMID.21214954 5.94E-05

GS_Duke_Module07_glucosedepletion PMID.20335537 0.002937

GS_GSEA_RB_PATHWAY_BIOCARTA http.//www.broadinstitute.org/gsea/msigdb/cards 0.00382

GS_Scorr_P53_Mut_Correlation PMID.17150101 0.004311

GS_HER2_Amplicon PMID.21214954 0.007577

GS_ROR_S_Model PMID.19204204 0.012094

GS_IGG_Cluster PMID.21214954 0.014302

GS_HS_Red12 PMID.21214954 0.018906

GS_GHI_RS_Model PMID.15591335 0.021864

GS_Duke_Module08_her2 PMID.20335537 0.028529

GS_Bcells_Plasmablast PMID.25800755 0.034936

GS_S100A9_A8 PMID.21214954 0.039593

GS_XRTinducedgenes PMID.24527691 0.043993

GS_Scorr_Her2_Correlation PMID.19204204 0.044143

Using Elastic Net feature selection, features that made the logistic regression model are shown in this table. All the selected features are weighted 
and show non-zero coefficient values where positive coefficients predict pCR and negative coefficients predict non-pCR. GS, gene signature; HS, 
homo sapiens; MM, mammary model; PgR, progesterone receptor; Wt, wild type; Mut, mutation
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