74 research outputs found
Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees
Background - Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results - Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years Âż Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion - Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of endemicity. These results provide an explanation for present day distribution patterns and origins of endemicity for African rain forest trees. Moreover, given the pre-Pleistocene origins of all the studied endemic East African genera and species, these results also offer important insights for setting conservation priorities in these highly diversified but threatene
The commonness of rarity: Global and future distribution of rarity across land plants
A key feature of lifeâs diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earthâs plant biodiversity that are rare. A large fraction, ~36.5% of Earthâs ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earthâs plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change
Ethnobotanical knowledge is vastly under-documented in northwestern South America
A main objective of ethnobotany is to document traditional knowledge about plants before it disappears. However, little is known about the coverage of past ethnobotanical studies and thus about how well the existing literature covers the overall traditional knowledge of different human groups. To bridge this gap, we investigated ethnobotanical data-collecting efforts across four countries (Colombia, Ecuador, Peru, Bolivia), three ecoregions (Amazon, Andes, ChocĂł), and several human groups (including Amerindians, mestizos, and Afro-Americans). We used palms (Arecaceae) as our model group because of their usefulness and pervasiveness in the ethnobotanical literature. We carried out a large number of field interviews (n = 2201) to determine the coverage and quality of palm ethnobotanical data in the existing ethnobotanical literature (n = 255) published over the past 60 years. In our fieldwork in 68 communities, we collected 87,886 use reports and documented 2262 different palm uses and 140 useful palm species. We demonstrate that traditional knowledge on palm uses is vastly under-documented across ecoregions, countries, and human groups. We suggest that the use of standardized data-collecting protocols in wide-ranging ethnobotanical fieldwork is a promising approach for filling critical information gaps. Our work contributes to the Aichi Biodiversity Targets and emphasizes the need for signatory nations to the Convention on Biological Diversity to respond to these information gaps. Given our findings, we hope to stimulate the formulation of clear plans to systematically document ethnobotanical knowledge in northwestern South America and elsewhere before it vanishesThis study was funded by the European Union, 7th Framework Programme (contract no. 212631), the Russel E. Train Education for Nature Program of
the WWF (to NPZ), the Anne S. Chatham fellowship of the Garden Club of America (to NPZ), and the Universidad AutĂłnoma de Madrid travel grants programme
(to RCL
Identification of Amazonian Trees with DNA Barcodes
International audienc
A Set of 100 Chloroplast DNA Primer Pairs to Study Population Genetics and Phylogeny in Monocotyledons
Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted Repeat region (IR). Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae), Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae), Digitaria excilis and Pennisetum glaucum (Poaceae). The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP) while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR). We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA) are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies
The global abundance of tree palms
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.
Location: Tropical and subtropical moist forests.
Time period: Current.
Major taxa studied: Palms (Arecaceae).
Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., â„10 cm diameter at breast height) abundance relative to coâoccurring nonâpalm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.
Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of longâterm climate stability. Lifeâform diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many nonâtree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of aboveâground biomass, but the magnitude and direction of the effect require additional work.
Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
- âŠ