424 research outputs found

    Fermi-Lat and WMAP Observations of the Puppis a Supernova Remnant

    Get PDF
    We report the detection of GeV gamma-ray emission from the supernova remnant Puppis A with the Fermi Gamma-Ray Space Telescope. Puppis A is among the faintest supernova remnants yet detected at GeV energies, with a luminosity of only 2.710(exp 34) (D/2.2 kpc)(exp 2) erg s(exp 1) between 1 and 100 GeV. The gamma-ray emission from the remnant is spatially extended, with a morphology matching that of the radio and X-ray emission, and is well described by a simple power law with an index of 2.1. We attempt to model the broadband spectral energy distribution, from radio to gamma-rays, using standard nonthermal emission mechanisms. To constrain the relativistic electron population we use 7 years of WMAP data to extend the radio spectrum up to 93 GHz. Both leptonic and hadronic dominated models can reproduce the nonthermal spectral energy distribution, requiring a total content of cosmic ray (CR) electrons and protons accelerated in Puppis A of at least WCR is approx. (1 - 5)10 (exp 49) erg

    The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    Get PDF
    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg 3deg south of the pulsar and observed in the radio, X-ray, and very high energy -ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features

    Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    Get PDF
    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 -- corrected error in author lis

    Fermi LAT Observations of the Supernova Remnant W28 (G6.4-0.1)

    Full text link
    We present detailed analysis of the two gamma-ray sources,1FGL J1801.3-2322c and 1FGL J1800.5-2359c,that have been found toward the supernova remnant(SNR) W28 with the Large Area Telescope(LAT) on board the Fermi Gamma-ray Space Telescope.1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28,and to extensively overlap with the TeV gamma-ray source HESS J1801-233,which is associated with a dense molecular cloud interacting with the supernova remnant.The gamma-ray spectrum measured with LAT from 0.2--100 GeV can be described by a broken power-law function with a break of ~1GeV,and photon indices of 2.09±\pm0.08(stat)±\pm0.28(sys) below the break and 2.74±\pm0.06(stat)±\pm0.09(sys) above the break.Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV--TeV band,we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud.The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provide a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved.An upper limit on the size of the gamma-ray emission was estimated to be ~16â€Č' using events above ~2GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B,which is considered to be associated with a dense molecular cloud that contains the ultra compact HII region W28A2(G5.89-0.39).We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C.The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10GeV and 100GeV.Comment: 23 pages, 6 figures. Accepted for publication in the Astrophysical Journal. Corresponding authors: H. Katagiri, H. Tajima, T. Tanaka, and Y. Uchiyam

    Multifragmentation in Xe(50A MeV)+Sn Confrontation of theory and data

    Get PDF
    We compare in detail central collisions Xe(50A MeV) + Sn, recently measured by the INDRA collaboration, with the Quantum Molecular Dynamics (QMD) model in order to identify the reaction mechanism which leads to multifragmentation. We find that QMD describes the data quite well, in the projectile/target region as well as in the midrapidity zone where also statistical models can be and have been employed. The agreement between QMD and data allows to use this dynamical model to investigate the reaction in detail. We arrive at the following observations: a) the in medium nucleon nucleon cross section is not significantly different from the free cross section, b) even the most central collisions have a binary character, c) most of the fragments are produced in the central collisions and d) the simulations as well as the data show a strong attractive in-plane flow resembling deep inelastic collisions e) at midrapidity the results from QMD and those from statistical model calculations agree for almost all observables with the exception of d2σdZdE{d^2 \sigma \over dZdE}. This renders it difficult to extract the reaction mechanism from midrapidity fragments only. According to the simulations the reaction shows a very early formation of fragments, even in central collisions, which pass through the reaction zone without being destroyed. The final transverse momentum of the fragments is very close to the initial one and due to the Fermi motion. A heating up of the systems is not observed and hence a thermal origin of the spectra cannot be confirmed.Comment: figures 1 and 2 changed (no more ps -errors

    GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies

    Full text link
    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and spatially resolved models for the high-energy emission, and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the intracluster medium. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter

    Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope on board the \textit{Fermi} satellite (\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ∌\sim 10 ∘^\circ up to 90∘^\circ, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from ∌0.5\sim0.5% to ∌10\sim10%.Comment: 16 pages, 10 figures, accepted for publication in Physical Review D - contact authors: M.N. Mazziotta and V. Vasileio

    Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere

    Full text link
    We report on measurements of the cosmic-ray induced gamma-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index Gamma = 2.79+-0.06.Comment: Accepted for publication in PR
    • 

    corecore