7 research outputs found

    Variation of Insect Attracting Odor in Endophytic Epichloë Fungi: Phylogenetic Constrains Versus Host Influence

    Get PDF
    Odor is a key trait for pollinator attraction in flowering plants, and many studies have investigated odor evolution in the light of pollinator selection by emphasizing the importance of the plant phylogenetic history. By contrast, little is known on the evolution of odors in fungus-insect interactions. In this study, profiles of three volatile compounds that are emitted by grass-inhabiting Epichloë fungi (Clavicipitaceae, Ascomycota) and that have a confirmed or likely role in the attraction of gamete-transferring Botanophila flies were investigated. We collected headspace samples from stromata of six European Epichloë species (including various host races) that originated from different locations in Switzerland, France, Poland, and UK for conducting gas chromatography analyses. Odor profiles exhibited considerable variation, but profiles of most species overlapped and did not discriminate at the species level. The exception was Epichloë festucae, which had a profile dominated by methyl (Z)-3-methyldodec-2-enoate. Based on an Epichloë phylogeny, there was some hierarchical structuring regarding levels of chokol K, another confirmed Botanophila attractant. However, patterns of odor profiles appeared to be largely dependant on particular Epichloë-host associations. The observed variation may be the result of complex selective pressures imposed by Botanophila gametic vectors, local environment, and mycoparasite

    Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity

    Get PDF
    Species of Epichloë (Ascomycota, Clavicipitaceae) are endophytic symbionts of pooid grasses. Sexual reproduction of the fungus depends on gamete-transferring Botanophila flies, which in earlier studies were shown to be specifically attracted by the fungal volatiles chokol K and methyl (Z)-3-methyldodec-2-enoate. As several Epichloë volatiles are known to have antimicrobial properties, it was hypothesised that the original function of insect-attracting volatiles is microbial deterrence. However, the origin of volatile compounds and their toxicity within an ecological context has not yet been clarified. We examined the inhibitory effect of chokol K and methyl (Z)-3-methyldodec-2-enoate on mycoparasites, plant pathogenic fungi and on Epichloë itself at ecologically relevant concentrations, and assessed volatile production in pure cultures of Epichloë on complex and defined media supplemented with inorganic sources of carbon and nitrogen. Chokol K reduced the spore germination of all tested fungi, whereas methyl (Z)-3-methyldodec-2-enoate had no inhibitory effect. Moreover, only chokol K was produced in culture, confirming its fungal origin. Our findings are consistent with the proposed scenario that fungal volatile substances have followed an evolutionary pathway from defence to attractio

    Index lesion contouring on prostate MRI for targeted MRI/US fusion biopsy - Evaluation of mismatch between radiologists and urologists

    Full text link
    PURPOSE: Mistargeting of focal lesions due to inaccurate segmentations can lead to false-negative findings on MRI-guided targeted biopsies. The purpose of this retrospective study was to examine inter-reader agreement of prostate index lesion segmentations from actual biopsy data between urologists and radiologists. METHOD: Consecutive patients undergoing transperineal MRI-targeted prostate biopsy for PI-RADS 3-5 lesions between January 2020 and December 2021 were included. Agreement between segmentations on T2w-images between urologists and radiologists was assessed with Dice similarity coefficient (DSC) and 95 % Hausdorff distance (95 % HD). Differences in similarity scores were compared using Wilcoxon test. Differences depending on lesion features (size, zonal location, PI-RADS scores, lesion distinctness) were tested with Mann-Whitney U test. Correlation with prostate signal-intensity homogeneity score (PSHS) and lesion size was tested with Spearman's rank correlation. RESULTS: Ninety-three patients (mean age 64.9 ± 7.1y, median serum PSA 6.5 [4.33-10.00]) were included. Mean similarity scores were statistically significantly lower between urologists and radiologists compared to radiologists only (DSC 0.41 ± 0.24 vs. 0.59 ± 0.23, p < 0.01; 95 %HD 6.38 ± 5.45 mm vs. 4.47 ± 4.12 mm, p < 0.01). There was a moderate and strong positive correlation between DSC scores and lesion size for segmentations from urologists and radiologists (ρ = 0.331, p = 0.002) and radiologists only (ρ = 0.501, p < 0.001). Similarity scores were worse in lesions ≤ 10 mm while other lesion features did not significantly influence similarity scores. CONCLUSION: There is significant mismatch of prostate index lesion segmentations between urologists and radiologists. Segmentation agreement positively correlates with lesion size. PI-RADS scores, zonal location, lesion distinctness, and PSHS show no significant impact on segmentation agreement. These findings could underpin benefits of perilesional biopsies

    Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity

    Full text link
    Species of Epichloë (Ascomycota, Clavicipitaceae) are endophytic symbionts of pooid grasses. Sexual reproduction of the fungus depends on gamete-transferring Botanophila flies, which in earlier studies were shown to be specifically attracted by the fungal volatiles chokol K and methyl (Z)-3-methyldodec-2-enoate. As several Epichloë volatiles are known to have antimicrobial properties, it was hypothesised that the original function of insect-attracting volatiles is microbial deterrence. However, the origin of volatile compounds and their toxicity within an ecological context has not yet been clarified. We examined the inhibitory effect of chokol K and methyl (Z)-3-methyldodec-2-enoate on mycoparasites, plant pathogenic fungi and on Epichloë itself at ecologically relevant concentrations, and assessed volatile production in pure cultures of Epichloë on complex and defined media supplemented with inorganic sources of carbon and nitrogen. Chokol K reduced the spore germination of all tested fungi, whereas methyl (Z)-3-methyldodec-2-enoate had no inhibitory effect. Moreover, only chokol K was produced in culture, confirming its fungal origin. Our findings are consistent with the proposed scenario that fungal volatile substances have followed an evolutionary pathway from defence to attraction

    Role of odour compounds in the attraction of gamete vectors in endophytic Epichloë fungi

    Full text link
    Grass-infecting Epichloë endophytes (Ascomycota, Calvicipitaceae) depend on Botanophila flies for gamete transfer, while fly larvae feed and develop on the fertilized fungal fruiting structures. Flies are known to be attracted by volatile signals, but the exact mechanisms of chemical communication and the degree of specialization are unknown. Headspace samples collected from five different Epichloë species were analysed with respect to physiologically active substances using Botanophila flies. In field bioassays using synthetic compounds, their attractiveness and the specificity of the Epichloë-Botanophila attraction were investigated. The identification of a new natural product, methyl (Z)-3-methyldodec-2-enoate, attracting Botanophila flies is reported here, and chokol K is confirmed as an attractive compound. Different blends of the two compounds attracted Botanophila flies under field conditions, but the three fly taxa present at the study site showed no preference for specific blends of volatiles. Chemical communication in the Epichloë-Botanophila system relies on a few specific compounds, known as a communication system with 'private channels'. Although ratios of emitted compounds vary in different Epichloë species, this seems not to lead to specialized attraction of Botanophila flies. Low selective pressure for specialization may have maintained a more generalist interaction between fungi and flies
    corecore