49 research outputs found

    Single Event Effect Testing of the Micron MT46V128M8

    Get PDF
    The Micron MT46V128M8 was tested for single event effects (SEE) at the Texas AM University Cyclotron Facility (TAMU) in June of 2017. Testing revealed a sensitivity to device hang-ups classified as single event functional interrupts (SEFI) and possible soft data errors classified as single event upsets (SEU)

    A Photometric System for Detection of Water and Methane Ices on Kuiper Belt Objects

    Full text link
    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J-band and Y-band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs) --- those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-IR spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of 3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE7 to the Haumea collisional family based on our water ice band observations(J-H2O = -1.03 +/- 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V-R = 0.38 +/- 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and we find that Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.Comment: 38 pages, 7 figure

    Near-Infrared Spectral Monitoring of Triton with IRTF/SpeX II: Spatial Distribution and Evolution of Ices

    Full text link
    This report arises from an ongoing program to monitor Neptune's largest moon Triton spectroscopically in the 0.8 to 2.4 micron range using IRTF/SpeX. Our objective is to search for changes on Triton's surface as witnessed by changes in the infrared absorption bands of its surface ices N2, CH4, H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 through 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy & Young 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton's Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton's N2 ice: the 2.15 micron absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton's CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton's CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.Comment: 22 pages, 13 figures, 5 tables, to appear in Icaru

    The outflow of the protostar in B335: I

    Full text link
    The isolated globule B335 contains a single, low luminosity Class 0 protostar associated with a bipolar nebula and outflow system seen nearly perpendicular to its axis. We observed the innermost regions of this outflow as part of JWST/NIRCam GTO program 1187, primarily intended for wide-field slitless spectroscopy of background stars behind the globule. We find a system of expanding shock fronts with kinematic ages of only a few decades emerging symmetrically from the position of the embedded protostar, which is not directly detected at NIRCam wavelengths. The innermost and youngest of the shock fronts studied here shows strong emission from CO. The next older shock front shows less CO and the third shock front shows only H_2 emission in our data. This third and most distant of these inner shock fronts shows substantial evolution of its shape since it was last observed with high spatial resolution in 1996 with Keck/NIRC. This may be evidence of a faster internal shock catching up with a slower one and of the two shocks merging.Comment: This paper is accepted by The Astronomical Journa

    A First Look at 22 nm FDSOI SRAM Single-Event Test Results

    Get PDF
    We will present the first ever single-event effects testing results on a 22 nm fully-depleted silicon-on-insulator test chip. The 128 MB SRAMs were irradiated with heavy ions and the results are compared to previous technology generations

    Coagulation Calculations of Icy Planet Formation at 15--150 AU: A Correlation Between the Maximum Radius and the Slope of the Size Distribution for Transneptunian Objects

    Full text link
    We investigate whether coagulation models of planet formation can explain the observed size distributions of transneptunian objects (TNOs). Analyzing published and new calculations, we demonstrate robust relations between the size of the largest object and the slope of the size distribution for sizes 0.1 km and larger. These relations yield clear, testable predictions for TNOs and other icy objects throughout the solar system. Applying our results to existing observations, we show that a broad range of initial disk masses, planetesimal sizes, and fragmentation parameters can explain the data. Adding dynamical constraints on the initial semimajor axis of `hot' KBOs along with probable TNO formation times of 10-700 Myr restricts the viable models to those with a massive disk composed of relatively small (1-10 km) planetesimals.Comment: Text: 44 pages, Tables: 5, Figures: 17; Accepted for publication in the Astronomical Journa

    Hunting planets and observing disks with the JWST NIRCam coronagraph

    Get PDF
    The expected stable point spread function, wide field of view, and sensitivity of the NIRCam instrument on the James Webb Space Telescope (JWST) will allow a simple, classical Lyot coronagraph to detect warm Jovian-mass companions orbiting young stars within 150 pc as well as cool Jupiters around the nearest low-mass stars. The coronagraph can also be used to study protostellar and debris disks. At λ = 4.5 μm, where young planets are particularly bright relative to their stars, and at separations beyond ~0.5 arcseconds, the low space background gives JWST significant advantages over ground-based telescopes equipped with adaptive optics. We discuss the scientific capabilities of the NIRCam coronagraph, describe the technical features of the instrument, and present end-to-end simulations of coronagraphic observations of planets and circumstellar disks

    Modeling the evolution of infrared galaxies: A Parametric backwards evolution model

    Full text link
    We aim at modeling the infrared galaxy evolution in an as simple as possible way and reproduce statistical properties among which the number counts between 15 microns and 1.1 mm, the luminosity functions, and the redshift distributions. We then aim at using this model to interpret the recent observations (Spitzer, Akari, BLAST, LABOCA, AzTEC, SPT and Herschel), and make predictions for future experiments like CCAT or SPICA. This model uses an evolution in density and luminosity of the luminosity function with two breaks at redshift ~0.9 and 2 and contains the two populations of the Lagache et al. (2004) model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. It has 13 free parameters and 8 additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel and AzTEC measurements with a Monte-Carlo Markov chain. The model ajusted on deep counts at key wavelengths reproduces the counts from the mid-infrared to the millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to the cosmic infrared background (CIB) and to the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the recent discovery by the South Pole Telescope (SPT) of a very bright population lying at high-redshift. We predict confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons due to the CIB.Comment: 25 pages, 10 tables, 18 figures, accepted for publication in A&

    JWST/NIRCam Imaging of Young Stellar Objects. II. Deep Constraints on Giant Planets and a Planet Candidate Outside of the Spiral Disk Around SAO 206462

    Full text link
    We present JWST/NIRCam F187N, F200W, F405N and F410M direct imaging data of the disk surrounding SAO 206462. Previous images show a very structured disk, with a pair of spiral arms thought to be launched by one or more external perturbers. The spiral features are visible in three of the four filters, with the non-detection in F410M due to the large detector saturation radius. We detect with a signal-to-noise ratio of 4.4 a companion candidate (CC1) that, if on a coplanar circular orbit, would orbit SAO 206462 at a separation of ∼300\sim300 au, 2.25σ2.25\sigma away from the predicted separation for the driver of the eastern spiral. According to the BEX models, CC1 has a mass of MCC1=0.8±0.3 MJM_\mathrm{CC1}=0.8\pm0.3~M_\mathrm{J}. No other companion candidates were detected. At the location predicted by simulations of both spirals generated by a single massive companion, the NIRCam data exclude objects more massive than ∼2.2 MJ\sim2.2~M_\mathrm{J} assuming the BEX evolutionary models. In terms of temperatures, the data are sensitive to objects with Teff∼650−850T_{\text{eff}}\sim650-850 K, when assuming planets emit like blackbodies (RpR_\mathrm{p} between 1 and 3RJ3 R_\mathrm{J}). From these results, we conclude that if the spirals are driven by gas giants, these must be either cold or embedded in circumplanetary material. In addition, the NIRCam data provide tight constraints on ongoing accretion processes. In the low extinction scenario we are sensitive to mass accretion rates of the order M˙∼10−9MJ\dot{M}\sim10^{-9} M_\mathrm{J} yr−1^{-1}. Thanks to the longer wavelengths used to search for emission lines, we reach unprecedented sensitivities to processes with M˙∼10−7MJ\dot{M}\sim10^{-7} M_\mathrm{J} yr−1^{-1} even towards highly extincted environments (AV≈50A_\mathrm{V}\approx50~mag).Comment: 18 pages, 8 figures, 3 table

    JWST/NIRCam Imaging of Young Stellar Objects. I. Constraints on Planets Exterior to The Spiral Disk Around MWC 758

    Full text link
    MWC 758 is a young star hosting a spiral protoplanetary disk. The spirals are likely companion-driven, and two previously-identified candidate companions have been identified -- one at the end the Southern spiral arm at ~0.6 arcsec, and one interior to the gap at ~0.1 arcsec. With JWST/NIRCam, we provide new images of the disk and constraints on planets exterior to ~1". We detect the two-armed spiral disk, a known background star, and a spatially resolved background galaxy, but no clear companions. The candidates that have been reported are at separations that are not probed by our data with sensitivity sufficient to detect them -- nevertheless, these observations place new limits on companions down to ~2 Jupiter-masses at ~150 au and ~0.5 Jupiter masses at ~600 au. Owing to the unprecedented sensitivity of JWST and youth of the target, these are among the deepest mass-detection limits yet obtained through direct imaging observations, and provide new insights into the system's dynamical nature.Comment: Accepted for publication in A
    corecore