We present a new near-infrared photometric system for detection of water ice
and methane ice in the solar system. The system consists of two medium-band
filters in the K-band region of the near-infrared, which are sensitive to water
ice and methane ice, plus continuum observations in the J-band and Y-band. The
primary purpose of this system is to distinguish between three basic types of
Kuiper Belt Objects (KBOs) --- those rich in water ice, those rich in methane
ice, and those with little absorbance. In this work, we present
proof-of-concept observations of 51 KBOs using our filter system, 21 of which
have never been observed in the near-IR spectroscopically. We show that our
custom photometric system is consistent with previous spectroscopic
observations while reducing telescope observing time by a factor of 3. We use
our filters to identify Haumea collisional family members, which are thought to
be collisional remnants of a much larger body and are characterized by large
fractions of water ice on their surfaces. We add 2009 YE7 to the Haumea
collisional family based on our water ice band observations(J-H2O = -1.03 +/-
0.27) which indicate a high amount of water ice absorption, our calculated
proper orbital elements, and the neutral optical colors we measured, V-R = 0.38
+/- 0.04, which are all consistent with the rest of the Haumea family. We
identify several objects dynamically similar to Haumea as being distinct from
the Haumea family as they do not have water ice on their surfaces. In addition,
we find that only the largest KBOs have methane ice, and we find that Haumea
itself has significantly less water ice absorption than the smaller Haumea
family members. We find no evidence for other families in the Kuiper Belt.Comment: 38 pages, 7 figure