294 research outputs found
Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures
A stochastic model is proposed for the efficient simulation of complex three-dimensional microstructures consisting of two different phases. The model is based on a hybrid approach, where in a first step a graph model is developed using ideas from stochastic geometry. Subsequently, the microstructure model is built by applying simulated annealing to the graph model. As an example of application, the model is fitted to a tomographic image describing the microstructure of electrodes in Li-ion batteries. The goodness of model fit is validated by comparing morphological characteristics of experimental and simulated data
A study on the response of single and double circular plates subjected to localised blast loading
The response of single and double layered steel plates to localised air-blast loading was examined. Two configurations, both comprising fully clamped circular plates with a 200 mm exposed diameter, were considered: 4mm thick single and (2+2) mm double layered plates. The localised air-blast loading was applied by centrally detonating discs of PE4 plastic explosive. Similar failure modes were evident in the single and double plate configurations, namely, Mode I (large inelastic deformation) and Mode II (capping failure along with deformation) responses. The double plates exhibited larger midpoint deflections than the single plates, and partial tearing of the front plate in the double plates was observed at a lower impulse than in the single plates. However, complete capping of both plates in the double plate configuration occurred at the same charge mass as for the single plates, implying that both configurations offer equivalent protection from capping failure as a result of this type of localised blast loading. A metallographic study of the deformed and torn plate regions did not reveal any phase transformation in the steel. It was also found that the 2 mm thick plates exhibited larger increases in grain size than the 4 mm thick plates
Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop
A summary is provided for the Second AIAA Sonic Boom Workshop held 8-9 January 2017 in conjunction with AIAA SciTech 2017. The workshop used three required models of increasing complexity: an axisymmetric body, a wing body, and a complete configuration with flow-through nacelle. An optional complete configuration with propulsion boundary conditions is also provided. These models are designed with similar nearfield signatures to isolate geometry and shock/expansion interaction effects. Eleven international participant groups submitted nearfield signatures with forces, pitching moment, and iterative convergence norms. Statistics and grid convergence of these nearfield signatures are presented. These submissions are propagated to the ground, and noise levels are computed. This allows the grid convergence and the statistical distribution of a noise level to be computed. While progress is documented since the first workshop, improvement to the analysis methods for a possible subsequent workshop are provided. The complete configuration with flow-through nacelle showed the most dramatic improvement between the two workshops. The current workshop cases are more relevant to vehicles with lower loudness and have the potential for lower annoyance than the first workshop cases. The models for this workshop with quieter ground noise levels than the first workshop exposed weaknesses in analysis, particularly in convective discretization
PYTHIA 6.4 Physics and Manual
The PYTHIA program can be used to generate high-energy-physics `events', i.e.
sets of outgoing particles produced in the interactions between two incoming
particles. The objective is to provide as accurate as possible a representation
of event properties in a wide range of reactions, within and beyond the
Standard Model, with emphasis on those where strong interactions play a role,
directly or indirectly, and therefore multihadronic final states are produced.
The physics is then not understood well enough to give an exact description;
instead the program has to be based on a combination of analytical results and
various QCD-based models. This physics input is summarized here, for areas such
as hard subprocesses, initial- and final-state parton showers, underlying
events and beam remnants, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This should
allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further
information may be found on the PYTHIA web page:
http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly
deleted section heading for "Physics Processes" reinserted, affecting section
numbering. Minor updates to take into account referee comments and new colour
reconnection option
Plasma–liquid interactions: a review and roadmap
Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas
Channel Characteristics of MIMO-WLAN Communications at 60GHz for Various Corridors
[[abstract]]A comparison of 4 × 4 multiple-input multiple-output wireless local area network wireless communication characteristics for six different geometrical shapes is investigated. These six shapes include the straight shape corridor with rectangular cross section, the straight shape corridor with arched cross section, the curved shape corridor with rectangular cross section, the curved shape corridor with arched cross section, the L-shape corridor, and the T-shape corridor. The impulse responses of these corridors are computed by applying shooting and bouncing ray/image (SBR/Image) techniques along with inverse Fourier transform. By using the impulse response of these multipath channels, the mean excess delay, root mean square (RMS) delay spread for these six corridors can be obtained. Numerical results show that the capacity for the rectangular cross section corridors is smaller than those for the arched cross section corridors regardless of the shapes. And the RMS delay spreads for the T-and the L-shape corridors are greater than the other corridors.[[notice]]補正完畢[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子
- …