9 research outputs found

    Obstacle Detection by Autonomous Vehicles: An Adaptive Neighborhood Search Radius Clustering Approach

    No full text
    For autonomous vehicles, obstacle detection results using 3D lidar are in the form of point clouds, and are unevenly distributed in space. Clustering is a common means for point cloud processing; however, improper selection of clustering thresholds can lead to under-segmentation or over-segmentation of point clouds, resulting in false detection or missed detection of obstacles. In order to solve these problems, a new obstacle detection method was required. Firstly, we applied a distance-based filter and a ground segmentation algorithm, to pre-process the original 3D point cloud. Secondly, we proposed an adaptive neighborhood search radius clustering algorithm, based on the analysis of the relationship between the clustering radius and point cloud spatial distribution, adopting the point cloud pitch angle and the horizontal angle resolution of the lidar, to determine the clustering threshold. Finally, an autonomous vehicle platform and the offline autonomous driving KITTI dataset were used to conduct multi-scene comparative experiments between the proposed method and a Euclidean clustering method. The multi-scene real vehicle experimental results showed that our method improved clustering accuracy by 6.94%, and the KITTI dataset experimental results showed that the F1 score increased by 0.0629

    Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins.

    Get PDF
    The CREB family of proteins are critical mediators of gene expression in response to extracellular signals and are essential regulators of adaptive behavior and long-term memory formation. The TORC proteins were recently described as potent CREB coactivators, but their role in regulation of CREB activity remained unknown. TORC proteins were found to be exported from the nucleus in a CRM1-dependent fashion. A high-throughput microscopy-based screen was developed to identify genes and pathways capable of inducing nuclear TORC accumulation. Expression of the catalytic subunit of PKA and the calcium channel TRPV6 relocalized TORC1 to the nucleus. Nuclear accumulation of the three human TORC proteins was induced by increasing intracellular cAMP or calcium levels. TORC1 and TORC2 translocation in response to calcium, but not cAMP, was mediated by calcineurin, and TORC1 was shown to be directly dephosphorylated by calcineurin. TORC function was shown to be essential for CRE-mediated gene expression induced by cAMP, calcium, or GPCR activation, and nuclear transport of TORC1 was sufficient to activate CRE-dependent transcription. Drosophila TORC was also shown to translocate in response to calcineurin activation in vivo. Thus, TORC nuclear translocation is an essential, conserved step in activation of cAMP-responsive genes

    Novel Dilute Bismides for IR Optoelectronics Applications

    No full text
    III-V-Bi compounds reveal a number of attractive physical properties promising for novel IR optoelectronic applications [1,2] and have received considerable attention as witnessed by the dedicated international workshops on this topic in the consecutive past four years. The isoelectronic nature of Bi atoms in III-Vs induces strong interactions with the energy bands of host materials leading to large band-gap reduction, less temperature sensitive band-gap and large spin-orbit split band. So far the most studied material is Ga(N)AsBi, while other dilute bismides have also been reported recently. In this paper, we shall briefly review several novel bismides: GaSbBi, InSbiBi, InAsBi, InPBi and InGaAsBi, and the Bi surfactant effect from our group, all grown by molecular beam epitaxy (MBE)

    Novel Dilute Bismides for IR Optoelectronics Applications

    No full text
    III-V-Bi compounds reveal a number of attractive physical properties promising for novel IR optoelectronic applications [1,2] and have received considerable attention as witnessed by the dedicated international workshops on this topic in the consecutive past four years. The isoelectronic nature of Bi atoms in III-Vs induces strong interactions with the energy bands of host materials leading to large band-gap reduction, less temperature sensitive band-gap and large spin-orbit split band. So far the most studied material is Ga(N)AsBi, while other dilute bismides have also been reported recently. In this paper, we shall briefly review several novel bismides: GaSbBi, InSbiBi, InAsBi, InPBi and InGaAsBi, and the Bi surfactant effect from our group, all grown by molecular beam epitaxy (MBE)
    corecore