2,120 research outputs found
The Ages of Stars
The age of an individual star cannot be measured, only estimated through
mostly model-dependent or empirical methods, and no single method works well
for a broad range of stellar types or for a full range in age. This review
presents a summary of the available techniques for age-dating stars and
ensembles of stars, their realms of applicability, and their strengths and
weaknesses. My emphasis is on low-mass stars because they are present from all
epochs of star formation in the Galaxy and because they present both special
opportunities and problems. The ages of open clusters are important for
understanding the limitations of stellar models and for calibrating empirical
age indicators. For individual stars, a hierarchy of quality for the available
age-dating methods is described. Although our present ability to determine the
ages of even the nearest stars is mediocre, the next few years hold great
promise as asteroseismology probes beyond stellar surfaces and starts to
provide precise interior properties of stars and as models continue to improve
when stressed by better observations.Comment: To appear in the 2010 volume of Annual Reviews of Astronomy and
Astrophysics
Mars polar volatiles: Topographic and geologic setting
Progress on a project to elucidate the geological and topographic setting of the Martian polar volatiles is reported. The following accomplishments are enumerated: (1) all of the Mariner 9 imaging data sets available through JPL were acquired and copied; (2) Mariner 9 imagery was investigated in terms of the accuracy of the imaging footprints, dark current, and residual image; (3) the transfer functions of both vidicons were investigated; and (4) the magnitude of the atmospheric scattering was examined
Differences between proposed Apollo sites - Far infrared emissivity evidence
Infrared emissivity spectra comparison of lunar surface area
The Metallicity of the HD 98800 System
Pre-main sequence (PMS) binaries and multiples enable critical tests of
stellar models if masses, metallicities, and luminosities of the component
stars are known. We have analyzed high-resolution, high signal-to-noise echelle
spectra of the quadruple-star system HD 98800 and using spectrum synthesis,
computed fits to the composite spectrum for a full range of plausible stellar
parameters for the components. We consistently find that sub-solar metallicity
yields fits with lower values, with an overall best-fit of . This metallicity appears to be consistent with PMS evolutionary
tracks for the measured masses and luminosities of the components of HD 98800
but additional constraints on the system and modelling are needed.Comment: 6 pages, 3 figures, 5 tables. Online-only material: color figure.
Accepted in Ap
Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups
We present here high resolution echelle spectra taken during three observing
runs of 14 single late-type stars identified in our previous studies (Montes et
al. 2001b, hereafter Paper I) as possible members of different young stellar
kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr),
Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial
velocities have been determined by cross correlation with radial velocity
standard stars and used together with precise measurements of proper motions
and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate
Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The
chromospheric activity level of these stars have been analysed using the
information provided for several optical spectroscopic features (from the Ca II
H & K to Ca II IRT lines) that are formed at different heights in the
chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined
and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of
stars members of well known young open clusters of different ages, in order to
obtain an age estimation. All these data allow us to analyse in more detail the
membership of these stars in the different young stellar kinematic groups.
Using both kinematic and spectroscopic criteria we have confirmed PW And, V368
Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local
Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major
group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript
(text, figures and tables) available at
http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication
in: Astronomy & Astrophysics (A&A
On the dispersion in lithium and potassium among late-type stars in young clusters: IC 2602
We have measured the equivalent width (EW) of the K I 7699 A line in a sample
of G and K-type members of the ~35 Myr old cluster IC 2602 for which a
dispersion in Li EWs had been reported by previous studies. Active cluster
stars with 0.75 < (B-V)o < 1 are characterized by a dispersion in the EW of the
K I 7699 A, while earlier and later-type stars do not show any significant
scatter. Cluster stars at all colors show potassium EW excesses with respect to
field inactive stars; furthermore, a statistically significant relationship is
found between differential potassium EWs and log Lx/Lbol ratios, indicating
that the EWs of the potassium feature are altered by activity. Our results
suggest that the dispersion in Li EWs observed among cluster stars later than
(B-V)o ~ 1 cannot be fully explained by the effects of activity. No final
conclusion can instead be drawn for earlier-type stars.Comment: accepted by A&
Ages of young stars
Determining the sequence of events in the formation of stars and planetary
systems and their time-scales is essential for understanding those processes,
yet establishing ages is fundamentally difficult because we lack direct
indicators. In this review we discuss the age challenge for young stars,
specifically those less than ~100 Myr old. Most age determination methods that
we discuss are primarily applicable to groups of stars but can be used to
estimate the age of individual objects. A reliable age scale is established
above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young
clusters, and consistency is shown between these ages and those from the upper
main sequence and the main sequence turn-off -- if modest core convection and
rotation is included in the models of higher-mass stars. Other available
methods for age estimation include the kinematics of young groups, placing
stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface
gravity measurement, rotation and activity, and lithium abundance. We review
each of these methods and present known strengths and weaknesses. Below ~20
Myr, both model-dependent and observational uncertainties grow, the situation
is confused by the possibility of age spreads, and no reliable absolute ages
yet exist. The lack of absolute age calibration below 20 Myr should be borne in
mind when considering the lifetimes of protostellar phases and circumstellar
material.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
- …
