251 research outputs found

    A demanding office: Agency and authority of the House Speakership

    Get PDF
    From the early Republic to modern times, the Speaker of the House of Representatives has been the single greatest source of legislative authority within the United States government. Often considered the second-highest ranking U.S official after the President, the Speaker utilizes the distinct tools at their disposal to guide the entire legislative process towards the direction they desire. Broadly, these tools include the ability to set the legislative agenda, control debate, and appoint committee chairs. However, the vastly complex set of rules, guidelines, and procedures which govern the modern House were simply not present when Congress first met in 1789. The formal and informal establishment of House procedures took over a century to refine and develop into what is now a highly regimented network almost entirely controlled by the majority party

    Extracellular Electron Uptake by Two Methanosarcina Species

    Get PDF
    Direct electron uptake by prokaryotes is a recently described mechanism with a potential application for energy and CO2 storage into value added chemicals. Members of Methanosarcinales, an environmentally and biotechnologically relevant group of methanogens, were previously shown to retrieve electrons from an extracellular electrogenic partner performing Direct Interspecies Electron Transfer (DIET) and were therefore proposed to be electroactive. However, their intrinsic electroactivity has never been examined. In this study, we tested two methanogens belonging to the genus Methanosarcina, M. barkeri, and M. horonobensis, regarding their ability to accept electrons directly from insoluble electron donors like other cells, conductive particles and electrodes. Both methanogens were able to retrieve electrons from Geobacter metallireducens via DIET. Furthermore, DIET was also stimulated upon addition of electrically conductive granular activated carbon (GAC) when each was co-cultured with G. metallireducens. However, when provided with a cathode poised at −400 mV (vs. SHE), only M. barkeri could perform electromethanogenesis. In contrast, the strict hydrogenotrophic methanogen, Methanobacterium formicicum, did not produce methane regardless of the type of insoluble electron donor provided (Geobacter cells, GAC or electrodes). A comparison of functional gene categories between the two Methanosarcina showed differences regarding energy metabolism, which could explain dissimilarities concerning electromethanogenesis at fixed potentials. We suggest that these dissimilarities are minimized in the presence of an electrogenic DIET partner (e.g., Geobacter), which can modulate its surface redox potentials by adjusting the expression of electroactive surface proteins

    Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops

    Get PDF
    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 µm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The (207)Pb/(206)Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Multi-gene-based phylogenetic analysis of oligotrich ciliates with emphasis on two dominant groups: Cyrtostrombidiids and strombidiids (Protozoa, Ciliophora)

    Get PDF
    publisher: Elsevier articletitle: Multi-gene-based phylogenetic analysis of oligotrich ciliates with emphasis on two dominant groups: Cyrtostrombidiids and strombidiids (Protozoa, Ciliophora) journaltitle: Molecular Phylogenetics and Evolution articlelink: http://dx.doi.org/10.1016/j.ympev.2016.08.019 content_type: article copyright: © 2016 Elsevier Inc. All rights reserved.The file attached is the Accepted/final draft post-refereeing version of the articl

    Salmonella in Broiler Litter and Properties of Soil at Farm Location

    Get PDF
    Contamination of litter in a broiler grow-out house with Salmonella prior to placement of a new flock has been shown to be a precursor of the flock's Salmonella contamination further down the production continuum. In the southern USA, broiler grow-out houses are primarily built on dirt pad foundations that are placed directly on top of the native soil surface. Broiler litter is placed directly on the dirt pad. Multiple grow-out flocks are reared on a single litter batch, and the litter is kept in the houses during downtime between flocks. The effects of environmental determinants on conditions in broiler litter, hence Salmonella ecology within it, has received limited attention. In a field study that included broiler farms in the states of Alabama, Mississippi and Texas we assessed Salmonella in broiler litter at the end of downtime between flocks, i.e. at the time of placement of a new flock for rearing. Here we utilized these results and the U.S. General Soil Map (STATSGO) data to test if properties of soil at farm location impacted the probability of Salmonella detection in the litter. The significance of soil properties as risk factors was tested in multilevel regression models after accounting for possible confounding differences among the farms, the participating broiler complexes and companies, and the farms' geographical positioning. Significant associations were observed between infiltration and drainage capabilities of soil at farm location and probability of Salmonella detection in the litter

    Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 59 (2010): 518-533, doi:10.1093/sysbio/syq037.An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72 major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable topology emerges without the removal of rapidly evolving genes or taxa, a practice common to phylogenomic analyses. Several major groups are stable and strongly supported in these analyses (e.g. SAR, Rhizaria, Excavata), while the proposed supergroup ‘Chromalveolata’ is rejected. Further, extensive instability among photosynthetic lineages suggests the presence of systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxonrich analyses such as presented here provide a method for testing the accuracy of relationships that receive high bootstrap support in phylogenomic analyses and enable placement of the multitude of lineages that lack genome scale data

    Chromosomal Rearrangements Formed by rrn Recombination Do Not Improve Replichore Balance in Host-Specific Salmonella enterica Serovars

    Get PDF
    operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance.This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance.The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle

    EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on an estimation of the public health impact of setting a new target for the reduction of Salmonella in turkeys

    Get PDF
    corecore