operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance.This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance.The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle