289 research outputs found

    A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines

    Get PDF
    The inclusion of nanoparticles (NP) in radiotherapy has been shown to increase the damaging effect on tumor cells. However, the mechanisms of action of NP combined with radiotherapy, and the influence of NP parameters and cell type on their radiosensitization capability at molecular and cellular levels still remain unclear. Gold NP (AuNP) have become particularly popular due to their multiple advantages. Within this context, our research work aimed to study the biochemical radiosensitization capacity of F98 and U87-MG glioma cell lines to 1.9 nm AuNP combined with X-ray irradiation. For this purpose, synchrotron-based infrared microspectroscopy (SR-FTIRM) was used as a powerful tool for biochemical composition and treatment response assessment of cells at a single-cell level. SR-FTIRM data, supported by multivariate analysis, revealed clear AuNP-induced changes in the DNA, protein and lipid spectral regions. The AuNP-related biochemical alterations appear prior to the irradiation, which gave us a first indication on the AuNP radiosensitization action. Biochemical modifications induced by the AuNP in the presence of radiotherapy irradiations include enhanced conformational changes in the protein secondary structures, variations in the intensity and position in the phosphodiester bands, and changes in the CH2 and CH3 stretching modes. These changes are better manifested at 24 hours post-irradiation time. SR-FTIRM results showed a clear heterogeneity in the biochemical cell response, probably due to the distinct cell-NP interactions and thus, to different DNA damage and cell death processes

    Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix

    Get PDF
    Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse

    Entropy-driven genome organization

    Get PDF
    DNA and RNA polymerases active on bacterial and human genomes in the crowded environment of a cell are modeled as beads spaced along a string. Aggregation of the large polymerizing complexes increases the entropy of the system through an increase in entropy of the many small crowding molecules; this occurs despite the entropic costs of looping the intervening DNA. Results of a quantitative cost/benefit analysis are consistent with observations that active polymerases cluster into replication and transcription “factories” in both pro- and eukaryotes. We conclude that the second law of thermodynamics acts through nonspecific entropic forces between engaged polymerases to drive the self-organization of genomes into loops containing several thousands (and sometimes millions) of basepairs

    Integrated holographic system for all-optical manipulation of developing embryos

    Get PDF
    We demonstrate a system for the combined optical injection and trapping of developing embryos. A Ti:sapphire femtosecond laser in tandem with a spatial light modulator, is used to perform fast and accurate beam-steering and multiplexing. We show successful intracellular delivery of a range of impermeable molecules into individual blastomeres of the annelid Pomatoceros lamarckii embryo by optoinjection, even when the embryo is still enclosed in a chorion. We also demonstrate the ability of the femtosecond laser optoinjection to deliver materials into inner layers of cells in a well-developed embryo. By switching to the continuous wave mode of the Ti:sapphire laser, the same system can be employed to optically trap and orient the 60 μm sized P. lamarckii embryo whilst maintaining its viability. Hence, a complete all-optical manipulation platform is demonstrated paving the way towards single-cell genetic modification and cell lineage mapping in emerging developmental biology model species

    Synchrotron-based infrared microspectroscopy study on the radiosensitization effects of Gd nanoparticles at megavoltage radiation energies

    Get PDF
    The outcome of radiotherapy can be further improved by combining radiotherapy with nanoparticles. Previous biological studies showed a significant amplification of the biological damage in cells charged with nanoparticles prior to radiotherapy treatments. The rationale has been based on the physical dose enhancement. However, this subject is still a matter of controversy and there are clear indications that biochemical effects may play a key role in the radiosensitization effects of nanoparticles. Within this context, the main goal of our study was to provide new insights into the radiosensitization effects of F98 glioma cells exposed to gadolinium nanoparticles combined with clinical megavoltage beams, and compare them with respect to kilovoltage radiotherapy (commonly used in combination with nanoparticles). For this purpose, we used synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) to provide relevant information on the treatment-induced biochemical changes of the main cell biomolecules. Biochemical differences were evaluated after the treatments to assess cellular damage. Multivariate analysis revealed nanoparticle-dependent changes in megavoltage treated cells. The main spectral variations were related to conformational changes in the protein secondary structures, which might be induced by radiation damage and by changes or rearrangements in the nucleic acid structures due to the initiation of DNA repair mechanisms. We also observed significant changes in the phosphate I and II bands, which concerns DNA damage, while few changes were detected in the lipid region. Spectroscopic data showed that these changes increased as a function of the dose. Finally, PCA analysis did not discriminate clearly between megavoltage and kilovoltage groups treated with nanoparticles, indicating that megavoltage radiosensitization effects might not differ significantly from those in kilovoltage radiotherapy

    Probing Intranuclear Environments at the Single-Molecule Level

    Get PDF
    Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites

    Microtubule-dependent Plus- and Minus End–directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus

    Get PDF
    Adenovirus (Ad) enters target cells by receptor-mediated endocytosis, escapes to the cytosol, and then delivers its DNA genome into the nucleus. Here we analyzed the trafficking of fluorophore-tagged viruses in HeLa and TC7 cells by time-lapse microscopy. Our results show that native or taxol-stabilized microtubules (MTs) support alternating minus- and plus end–directed movements of cytosolic virus with elementary speeds up to 2.6 μm/s. No directed movement was observed in nocodazole-treated cells. Switching between plus- and minus end–directed elementary speeds at frequencies up to 1 Hz was observed in the periphery and near the MT organizing center (MTOC) after recovery from nocodazole treatment. MT-dependent motilities allowed virus accumulation near the MTOC at population speeds of 1–10 μm/min, depending on the cell type. Overexpression of p50/dynamitin, which is known to affect dynein-dependent minus end–directed vesicular transport, significantly reduced the extent and the frequency of minus end–directed migration of cytosolic virus, and increased the frequency, but not the extent of plus end–directed motility. The data imply that a single cytosolic Ad particle engages with two types of MT-dependent motor activities, the minus end– directed cytoplasmic dynein and an unknown plus end– directed activity

    Cell Nucleus-Targeting Zwitterionic Carbon Dots

    Get PDF
    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using beta-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.open
    corecore