6,180 research outputs found
Understanding Marine Microbes, the Driving Engines of the Ocean
When you hear the word microbes, what comes to your mind? Something much too small to see and that makes you fall ill? Just because some microbes cause diseases that does not mean they are all evil. For example, in the marine (ocean) environment, the vast majority of microbes are good ones. They are the âdriving enginesâ of the ocean and are essential for the health of our whole planet. Unfortunately, most of the marine microbes and their interactions with the marine environment are poorly understood. So, it is important to get an idea of which microbes are helping us and how they are doing this. These data will provide scientists with the knowledge to fight against big global challenges, such as climate change and environmental pollution. Unfortunately, it is very hard to study marine microbes due to their microscopic size, huge diversity, and their big home â the ocean. Therefore, we would like to engage âcitizen scientistsâ in this project to help us to sample marine microbes so that we can identify them
Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109997/1/lno20105562381.pd
Phenomenological analysis of K+ meson production in proton-nucleus collisions
Total and differential cross sections from literature, on the production of
K+ mesons in pA interactions at projectile energies between T=0.8 and 2.9 GeV,
covering the transition across the free nucleon-nucleon threshold at 1.58 GeV,
have been investigated. From the target-mass dependence of the production cross
sections no evidence for the expected change of the dominant reaction mechanism
from two-step to direct kaon production was found. At T=1.0 GeV the A
dependences of the total cross sections and of the most recent data from
COSY-Juelich, differential cross sections measured under forward angles, are
strongly different. The invariant K+ production cross sections show an overall
exponential scaling behavior with the squared four-momentum transfer between
the beam proton and the produced K+ meson for t< -0.05 GeV^2 independent of the
beam energy and emission angle. The data from COSY-Juelich reveal a strongly
different t dependence in the region of t>0 GeV^2. Further data at forward
angles and different beam energies should be taken in order to explore this
region of kinematically extreme conditions.Comment: 9 Pages, 11 Figure
Short- and long-term conditioning of a temperate marine diatom community to acidification and warming
Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into âartificialâ communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned âartificialâ community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes
Testing the Resolving Power of 2-D K^+ K^+ Interferometry
Adopting a procedure previously proposed to quantitatively study
two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was
performed to test the resolving power of that method when applied to less
favorable conditions, i.e., if no significant contribution from long lived
resonances is expected, as in kaon interferometry. For that purpose, use is
made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions
at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case,
although it still is possible to distinguish two distinct decoupling
geometries. The present analysis seems to favor scenarios with no resonance
formation at the AGS energy range, if the preliminary K^+ K^+ data are
confirmed. The possible compatibility of data with zero decoupling proper time
interval, conjectured by the 3-D experimental analysis, is also investigated
and is ruled out when considering more realistic dynamical models with
expanding sources. These results, however, clearly evidence the important
influence of the time emission interval on the source effective transverse
dimensions. Furthermore, they strongly emphasize that the static Gaussian
parameterization, commonly used to fit data, cannot be trusted under more
realistic conditions, leading to distorted or even wrong interpretation of the
source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include
Hadron Production in Heavy Ion Collisions
We review hadron production in heavy ion collisions with emphasis on pion and
kaon production at energies below 2 AGeV and on partonic collectivity at RHIC
energies.Comment: 31 pages, 26 figures, accepted for publication in Landolt-Boernstein
Volume 1-23
K^+ production in the reaction at incident energies from 1 to 2 AGeV
Semi-inclusive triple differential multiplicity distributions of positively
charged kaons have been measured over a wide range in rapidity and transverse
mass for central collisions of Ni with Ni nuclei. The transverse
mass () spectra have been studied as a function of rapidity at a beam
energy 1.93 AGeV. The distributions of K^+ mesons are well described by a
single Boltzmann-type function. The spectral slopes are similar to that of the
protons indicating that rescattering plays a significant role in the
propagation of the kaon. Multiplicity densities have been obtained as a
function of rapidity by extrapolating the Boltzmann-type fits to the measured
distributions over the remaining phase space. The total K^+ meson yield has
been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented
in comparison to existing data. The low total yield indicates that the K^+
meson can not be explained within a hadro-chemical equilibrium scenario,
therefore indicating that the yield does remain sensitive to effects related to
its production processes such as the equation of state of nuclear matter and/or
modifications to the K^+ dispersion relation.Comment: 24 pages Latex (elsart) 7 PS figures to be submitted to Nucl. Phys
Defining DNA-based operational taxonomic units for microbial-eukaryote ecology
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 75 (2009): 5797-5808, doi:10.1128/AEM.00298-09.DNA sequence information has been increasingly used in ecological research on
microbial eukaryotes. Sequence-based approaches have included studies of the total
diversity of selected ecosystems, the autecology of ecologically relevant species, and the
identification and enumeration of species of interest to human health. It is still
uncommon, however, to delineate protistan species based on their genetic signatures.
The reluctance to assign species-level designations based on DNA sequences is partly a
consequence of the limited amount of sequence information presently available for many
free-living microbial eukaryotes, and partly the problematic nature and debate
surrounding the microbial species concept. Despite the difficulties inherent in assigning
species names to DNA sequences, there is a growing need to attach meaning to the
burgeoning amount of sequence information entering the literature, and a growing desire
to apply this information in ecological studies. We describe a computer-based tool that
assigns DNA sequences from environmental databases to operational taxonomic units at
approximate species-level distinctions. The approach provides a practical method for
ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated
analysis of large numbers of samples spanning great taxonomic breadth.
Derivation of the algorithm was based on an analysis of complete small subunit
ribosomal RNA (18S) gene sequences and partial gene sequences obtained from
GenBank for morphologically described protistan species. The program was tested using
environmental 18S data sets from two oceanic ecosystems. A total of 388 operational
taxonomic units were observed among 2,207 sequences obtained from samples collected
in the western North Atlantic and eastern North Pacific.Support for this manuscript
was provided by National Science Foundation grants MCB-0732066, MCB-0703159 and
OCE-0550829 and a grant from the Gordon and Betty Moore Foundation
- âŠ