69 research outputs found

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Einführungsveranstaltung für Zahn- und Pharmaziestudierende in das Grundpraktikum (Sommersemester 2021)

    No full text
    Inhalt: Ablauf und Erfordernisse; Praktikumstermine; Regeln für den Ablauf; Scheinvergabeordnung im Fach Physik für Studierende der Zahnmedizin und Pharmazie; Arbeitsschutz/Verhalten im Praktiku

    Porous spherical gold nanoparticles via a laser induced process

    No full text
    Nanoparticles consisting of a mixture of several metals and also porous nanoparticles due to their special structure exhibit properties that find applications in spectroscopic detection or catalysis. Different approaches of top down or bottom up technologies exist for the fabrication of such particles. We present a novel combined approach for the fabrication of spherical porous gold nanoparticles on low-cost glass substrates under ambient conditions using a UV-laser induced particle preparation process with subsequent wet chemical selective etching. In this preparation route, nanometer-sized branched structures are formed in spherical particles. The laser process, which is applied to a silver/gold bilayer system with different individual layer thicknesses, generates spherical mixed particles in a nanosecond range and influences the properties of the fabricated nanoparticles, such as the size and the mixture and thus the spectral response. The subsequent etching process is performed by selective wet chemical removal of silver from the nanoparticles with diluted nitric acid. The gold to silver ratio was investigated by energy-dispersive X-ray spectroscopy. The porosity depends on laser parameters and film thickness as well as on etching parameters such as time. After etching, the surface area of the remaining Au nanoparticles increases which makes these particles interesting for catalysis and also as carrier particles for substances. Such substances can be positioned at defined locations or be released in appropriate environments. Absorbance spectra are also analyzed to show how the altered fractured shape of the particles changes localized plasmon resonances of the resultingt particles

    Formation of solid lubricants during high temperature tribology of silver-doped molybdenum nitride coatings deposited by dcMS and HIPIMS

    No full text
    The coating system MoN-Ag is an interesting candidate for industrial applications as a low friction coating at elevated temperatures, due to the formation of lubricous molybdenum oxides and silver molybdates. Film deposition was performed by high-power impulse magnetron sputtering and direct current magnetron sputtering. To facilitate a future transfer to industry Mo-Ag composite targets have been sputtered in Ar/N2 atmosphere. The chemical composition of the deposited MoN-Ag films has been investigated by wavelength dispersive X-ray spectroscopy. Morphology and crystallographic phases of the films were studied by scanning electron microscopy and X-ray diffraction. To obtain film hardness in relation to Ag content and bias voltage, the instrumented indentation test was applied. Pin-on-disc tribological tests have been performed at room temperature and at high temperature (HT, 450 °C). Samples from HT tests have been analyzed by Raman measurements to identify possible molybdenum oxide and/or silver molybdate phases. At low Ag contents (≤7 at.%), coatings with a hardness of 18–31 GPa could be deposited. Friction coefficients at HT decreased with increasing Ag content. After these tests, Raman measurements revealed the MoO3 phase on all samples and the Ag2Mo4O13 phase for the highest Ag contents (~23–26 at.%)

    Superconductivity and role of pnictogen and Fe substitution in 112-LaPdxPn2(Pn=Sb,Bi)

    No full text
    We report on the epitaxial growth of As-free and phase-pure thin films of the 112-pnictide compounds LaPdxPn2 (Pn=Sb,Bi) grown on (100) MgO substrates by molecular beam epitaxy. X-ray diffraction, reflection high-energy electron diffraction, and x-ray photoelectron spectroscopy confirm the HfCuSi2 structure of the material with a peculiar pnictogen square net layer. The superconducting transition temperature Tc varies little with Pd concentration. LaPdxSb2 has a higher Tc (3.2 K) by about 20% compared with LaPdxBi2 (2.7 K). Fe substitution of Pd leads to a rapid decay of superconductivity, suggesting that these superconductors are conventional type II
    corecore