806 research outputs found
Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device
A magnetic skyrmionium (also called 2-skyrmion) can be understood as a
skyrmion - a topologically non-trivial magnetic whirl - which is situated in
the center of a second skyrmion with reversed magnetization. Here, we propose a
new optoelectrical writing and deleting mechanism for skyrmioniums in thin
films, as well as a reading mechanism based on the topological Hall voltage.
Furthermore, we point out advantages for utilizing skyrmioniums as carriers of
information in comparison to skyrmions with respect to the current-driven
motion. We simulate all four constituents of an operating skyrmionium-based
racetrack storage device: creation, motion, detection and deletion of bits. The
existence of a skyrmionium is thereby interpreted as a '1' and its absence as a
'0' bit.Comment: This is a post-peer-review, pre-copyedit version of an article
published in Scientific Reports. The final authenticated version is available
online at [DOI
Effect of sludge treatment on the bioaccumulation of nonylphenol in grass grown on sludge-amended soil
We studied the accumulation of p353-nonylphenol residues in the biomass of grass grown in soil amended with sewage sludge submitted to various conditioning/dewatering treatments. Incubation experiments were conducted growing Poa pratensis in sludge-amended soils and applying one 14C-labelled isomer of nonylphenol in the different systems. More metabolites than parent compounds were recovered in both roots and leaves of the grass. The type of sludge conditioning and dewatering treatment had a slight effect on the bioaccumulation of nonylphenol and its metabolites. When the grass was cultivated in soils amended with dewatered sludge without conditioning pretreatment, an increased accumulation was observed in the roots, while the final biomass of the grass was lowe
Robotic assembly of complex planar parts: An experimental evaluation
In this paper we present an experimental evaluation of automatic robotic assembly of complex planar parts. The torque-controlled DLR light-weight robot, equipped with an on-board camera (eye-in-hand configuration), is committed with the task of looking for given parts on a table, picking them, and inserting them inside the corresponding holes on a movable plate. Visual servoing techniques are used for fine positioning over the selected part/hole, while insertion is based on active compliance control of the robot and robust assembly planning in order to align the parts automatically with the hole. Execution of the complete task is validated through extensive experiments, and performance of humans and robot are compared in terms of overall execution time
Continental-scale patterns of pathogen prevalence: a case study on the corncrake
Pathogen infections can represent a substantial threat to wild populations, especially those already limited in size. To determine how much variation in the pathogens observed among fragmented populations is caused by ecological factors, one needs to examine systems where host genetic diversity is consistent among the populations, thus controlling for any potentially confounding genetic effects. Here, we report geographic variation in haemosporidian infection among European populations of corncrake. This species now occurs in fragmented populations, but there is little genetic structure and equally high levels of genetic diversity among these populations. We observed a longitudinal gradient of prevalence from western to Eastern Europe negatively correlated with national agricultural yield, but positively correlated with corncrake census population sizes when only the most widespread lineage is considered. This likely reveals a possible impact of local agriculture intensity, which reduced host population densities in Western Europe and, potentially, insect vector abundance, thus reducing the transmission of pathogens. We conclude that in the corncrake system, where metapopulation dynamics resulted in variations in local census population sizes, but not in the genetic impoverishment of these populations, anthropogenic activity has led to a reduction in host populations and pathogen prevalence
Local Guarantees in Graph Cuts and Clustering
Correlation Clustering is an elegant model that captures fundamental graph
cut problems such as Min Cut, Multiway Cut, and Multicut, extensively
studied in combinatorial optimization. Here, we are given a graph with edges
labeled or and the goal is to produce a clustering that agrees with the
labels as much as possible: edges within clusters and edges across
clusters. The classical approach towards Correlation Clustering (and other
graph cut problems) is to optimize a global objective. We depart from this and
study local objectives: minimizing the maximum number of disagreements for
edges incident on a single node, and the analogous max min agreements
objective. This naturally gives rise to a family of basic min-max graph cut
problems. A prototypical representative is Min Max Cut: find an cut
minimizing the largest number of cut edges incident on any node. We present the
following results: an -approximation for the problem of
minimizing the maximum total weight of disagreement edges incident on any node
(thus providing the first known approximation for the above family of min-max
graph cut problems), a remarkably simple -approximation for minimizing
local disagreements in complete graphs (improving upon the previous best known
approximation of ), and a -approximation for
maximizing the minimum total weight of agreement edges incident on any node,
hence improving upon the -approximation that follows from
the study of approximate pure Nash equilibria in cut and party affiliation
games
Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO
Inelastic neutron scattering has been used to study the magneto-elastic
excitations in the multiferroic manganite hexagonal YMnO. An avoided
crossing is found between magnon and phonon modes close to the Brillouin zone
boundary in the -plane. Neutron polarization analysis reveals that this
mode has mixed magnon-phonon character. An external magnetic field along the
-axis is observed to cause a linear field-induced splitting of one of the
spin wave branches. A theoretical description is performed, using a Heisenberg
model of localized spins, acoustic phonon modes and a magneto-elastic coupling
via the single-ion magnetostriction. The model quantitatively reproduces the
dispersion and intensities of all modes in the full Brillouin zone, describes
the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic
coupling. The combined information, including the field-induced magnon
splitting, allows us to exclude several of the earlier proposed models and
point to the correct magnetic ground state symmetry, and provides an effective
dynamic model relevant for the multiferroic hexagonal manganites.Comment: 12 pages, 10 figure
On the Complexity of Searching in Trees: Average-case Minimization
We focus on the average-case analysis: A function w : V -> Z+ is given which
defines the likelihood for a node to be the one marked, and we want the
strategy that minimizes the expected number of queries. Prior to this paper,
very little was known about this natural question and the complexity of the
problem had remained so far an open question.
We close this question and prove that the above tree search problem is
NP-complete even for the class of trees with diameter at most 4. This results
in a complete characterization of the complexity of the problem with respect to
the diameter size. In fact, for diameter not larger than 3 the problem can be
shown to be polynomially solvable using a dynamic programming approach.
In addition we prove that the problem is NP-complete even for the class of
trees of maximum degree at most 16. To the best of our knowledge, the only
known result in this direction is that the tree search problem is solvable in
O(|V| log|V|) time for trees with degree at most 2 (paths).
We match the above complexity results with a tight algorithmic analysis. We
first show that a natural greedy algorithm attains a 2-approximation.
Furthermore, for the bounded degree instances, we show that any optimal
strategy (i.e., one that minimizes the expected number of queries) performs at
most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is
the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum
degree of T. We combine this result with a non-trivial exponential time
algorithm to provide an FPTAS for trees with bounded degree
- …