14 research outputs found

    Causes and consequences of mine waste microbial community structure

    Get PDF
    Acid mine drainage (AMD) is a widely studied environment in microbiology and geochemistry. However, there have been far fewer detailed studies of the microbiology and biogeochemistry of historic sulfidic mine wastes giving rise to AMD. Key questions have yet to be answered about the ecological mechanisms underlying the relationship between microbial communities and mineral substrates, the environmental features imposing selective pressure on such communities compared to nearby soils and the main ecological principles that can be used to explain such complex relationships. The South West of England has been subject to intensive mining activity, resulting in a variety of mine wastes and disused underground tunnels left undisturbed for decades. The microbial consortia inhabiting these environments make an interesting case study, as they derive from the same region and yet their similarity is unknown. Samples of mine waste and nearby soils were collected from twelve sites in Cornwall and West Devon. Geochemistry and microbial ecology were analysed to study the environmental drivers of microbial community composition. Metals from different fractions of the samples were analysed (total, readily extractable and pore water) and their compositions related to the microbial community. The microbial ecology of most sites appeared to be largely associated with pH, and to a lesser extent to the bulk metals composition. and communities were more diverse in waste sites than nearby soils. This suggested the possibility of strong local adaptation or dispersal limitation. Information on local adaptation of consortia is potentially useful for further manipulations as it provides insights into their performance in defined conditions. Therefore, inocula prepared from the twelve mine wastes were assessed for local adaptation to sympatric and allopatric substrates via a reciprocal transplant experiment. Results revealed that, with the exemption of a few sites, microbial communities were not generally locally adapted. Bioleaching performance (pyrite dissolution) was further analysed to understand how this is improved (or not) through community mixing and coalescence. Four inocula were mixed in all possible sixteen combinations to form new coalesced inocula whose performance was tested in pyrite, showing that coalescence potentially increases performance. The results give insights for the use of communities in biotechnologies such as biohydrometallurgy, as well as the microbial ecology of AMD-generating wastes. This study contributes to the knowledge of the microbial ecology of acidophiles in the scenario of whole communities coalescence and transplant

    Technical Note: Determination of the metabolically active fraction of benthic foraminifera by means of Fluorescent In Situ Hybridization (FISH)

    Get PDF
    Benthic foraminifera are an important component of the marine biota, but protocols for investigating their viability and metabolism are still extremely limited. Classical studies on benthic foraminifera have been based on direct counting under light microscopy. Typically, these organisms are stained with Rose Bengal, which binds proteins and other macromolecules, but does not allow discrimination between viable and recently dead organisms. The fluorescent in situ hybridization technique (FISH) represents a new and useful approach to identify living cells possessing an active metabolism. Our work is the first test of the suitability of the FISH technique, based on fluorescent probes targeting the 18S rRNA, to detect live benthic foraminifera. The protocol was applied on <I>Ammonia</I> group and Miliolids, as well as on agglutinated polythalamous (i.e., <I>Leptohalysis scottii</I> and <I>Eggerella scabra</I>) and soft-shelled monothalamous (i.e., <I>Psammophaga</I> sp. and saccamminid morphotypes) taxa. The results from FISH analyses were compared with those obtained, on the same specimens assayed with FISH, from microscopic analysis of the cytoplasm colour, presence of pigments and pseudopodial activity. Our results indicate that FISH targets only metabolically active foraminifera, and allows discerning from low to high cellular activity, validating the hypothesis that the intensity of the fluorescent signal emitted by the probe is dependent upon the physiological status of cells. These findings support the usefulness of this molecular approach as a key tool for obtaining information on the physiology of living foraminifera, both in field and experimental settings

    An Extreme Case of a Misaligned Highly Flattened Wind in the Wolf-Rayet Binary CX Cephei

    Full text link
    CX Cep (WR 151) is the WR+O binary (WN5+O5V) with the second shortest period known in our Galaxy. To examine the circumstellar matter distribution and to better constraint the orbital parameters and mass-loss rate of the WR star, we obtained broadband and multi-band (i.e. UBVRI) linear polarization observations of the system. Our analysis of the phase-locked polarimetric modulation confirms the high orbital inclination of the system (i.e. i=65oi=65^o). Using the orbital solution of Lewis et al. (1993) we obtain masses of 33.9M⊙33.9 M_{\odot} and 23.9M⊙23.9 M_{\odot} for the O and WR stars respectively, which agree with their spectral types. A simple polarimetric model accounting for finite stellar size effects allowed us to derive a mass-loss rate for the WR star of 0.3−0.5×10−5M⊙/yr0.3-0.5\times10^{-5} M_{\odot}/yr. This result was remarkably independent of the model's input parameters and favors an earlier spectral type for the WR component (i.e. WN4). Finally, using our multi-band observations, we fitted and subtracted from our data the interstellar polarization. The resulting constant intrinsic polarization of 3−43-4% is misaligned in relation to the orbital plane (i.e. ΞCIP=26o\theta_{CIP}=26^o vs. Ω=75o\Omega=75^o) and is the highest intrinsic polarization ever observed for a WR star. This misalignment points towards a rotational (or magnetic) origin for the asymmetry and contradicts the most recent evolutionary models for massive stars (Meynet & Maeder 2003) which predict spherically symmetric winds during the WR phase (i.e. CIP=0CIP=0%).Comment: 26 pages, 4 figures. Astrophysical Journal (submited

    Herbal supplements in the print media: communicating benefits and risks

    Get PDF
    Background The rise in use of food supplements based on botanical ingredients (herbal supplements) is depicted as part of a trend empowering consumers to manage their day-to-day health needs, which presupposes access to clear and accurate information to make effective choices. Evidence regarding herbal supplement efficacy is extremely variable so recent regulations eliminating unsubstantiated claims about potential effects leave producers able to provide very little information about their products. Medical practitioners are rarely educated about herbal supplements and most users learn about them via word-of-mouth, allowing dangerous misconceptions to thrive, chief among them the assumption that natural products are inherently safe. Print media is prolific among the information channels still able to freely discuss herbal supplements. Method This study thematically analyses how 76 newspaper/magazine articles from the UK, Romania and Italy portray the potential risks and benefits of herbal supplements. Results Most articles referenced both risks and benefits and were factually accurate but often lacked context and impartiality. More telling was how the risks and benefits were framed in service of a chosen narrative, the paucity of authoritative information allowing journalists leeway to recontextualise herbal supplements in ways that serviced the goals and values of their specific publications and readerships. Conclusion Providing sufficient information to empower consumers should not be the responsibility of print media, instead an accessible source of objective information is required.</p

    Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum

    No full text
    Observation-based reconstructions of sea surface temperature from relatively stable periods in the past, such as the Last Glacial Maximum, represent an important means of constraining climate sensitivity and evaluating model simulations. The first quantitative global reconstruction of sea surface temperatures during the Last Glacial Maximum was developed by the Climate Long-Range Investigation, Mapping and Prediction (CLIMAP) project in the 1970s and 1980s . Since that time, several shortcomings of that earlier effort have become apparent. Here we present an updated synthesis of sea surface temperatures during the Last Glacial Maximum, rigorously defined as the period between 23 and 19 thousand years before present, from the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project. We integrate microfossil and geochemical reconstructions of surface temperatures and include assessments of the reliability of individual records. Our reconstruction reveals the presence of large longitudinal gradients in sea surface temperature in all of the ocean basins, in contrast to the simulations of the Last Glacial Maximum climate available at present
    corecore