137 research outputs found

    SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells

    Get PDF
    Significance Lysosomes are degradative intracellular organelles essential to cell maintenance and homeostasis. Although their degradative function is well documented, the proteins responsible for the efflux, and reuse, of lysosomal degradation products remain largely unknown. In this study, we identify the transporter responsible for lysosomal efflux of glutamine, an amino acid central to several key metabolic pathways. This central role of glutamine is exploited by several types of cancer cells with increased consumption of glutamine. Interestingly, genetic inactivation of the transporter impairs their growth under conditions of limited glutamine availability when internalized extracellular proteins are used as an alternative source of amino acids, suggesting novel approaches for anticancer therapies.</jats:p

    Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity

    Get PDF
    Background: While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. Results: The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. Conclusion: Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events

    Investigating thermal stability based on the structural changes of lactase enzyme by several orthogonal methods

    Get PDF
    Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used as a model to help understand thermal stability of enzyme-type biopharmaceuticals. Enzyme activity (hydrolyzation of lactose) of β-galactosidase was determined after storing the solid enzyme substance at various temperatures. For a better understanding of the relationship between structure and activity changes we determined the mass and size of the molecules with gel electrophoresis and dynamic light scattering and detected aggregation processes. A bottom-up proteomic procedure was used to determine the primary amino acid sequence and to investigate changes in the N-glycosylation pattern of the protein. NMR and CD spectroscopic methods were used to observe changes in higher order structures and to reveal relationships between structural and functional changes

    Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Get PDF
    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions

    Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina

    Get PDF
    High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca2+, neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼305 bp corresponding to the predicted size of the α2δ3 subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.U.S. Army Medical Research & Materiel Command (USAMRMC); Grant sponsor: Telemedicine & Advanced Technology Research Center (TATRC); Grant number: W81XWH-10-2-0077; Grant sponsor: National Institutes of Health; Grant number: EY04067; Grant sponsor: VA Merit Review (to N.B.)

    Critical Role of Dispensable Genes in Mycoplasma agalactiae Interaction with Mammalian Cells▿

    No full text
    Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens

    Molecular and cellular basis of lysosomal transmembrane protein dysfunction

    Get PDF
    AbstractLysosomal membrane proteins act at several crucial steps of the lysosome life cycle, including lumen acidification, metabolite export, molecular motor recruitment and fusion with other organelles. This review summarizes the molecular mechanisms of lysosomal storage diseases caused by defective transport of small molecules or ions across the lysosomal membrane, as well as Danon disease. In cystinosis and free sialic acid storage diseases, transporters for cystine and acidic monosaccharides, respectively, are blocked or retarded. A putative cobalamin transporter and a hybrid transporter/transferase of acetyl groups are defective in cobalamin F type disease and mucopolysaccharidosis type IIIC, respectively. In neurodegenerative forms of osteopetrosis, mutations of a proton/chloride exchanger impair the charge balance required for sustained proton pumping by the V-type ATPase, thus resulting in bone-resorption lacuna neutralization. However, the mechanism leading to lysosomal storage and neurodegeneration remains unclear. Mucolipidosis type IV is caused by mutations of a lysosomal cation channel named TRPML1; its gating properties are still poorly understood and the ion species linking this channel to lipid storage and membrane traffic defects is debated. Finally, the autophagy defect of Danon disease apparently arises from a role of LAMP2 in lysosome/autophagosome fusion, possibly secondary to a role in dynein-based centripetal motility

    A Na(+)/Cl(-)-dependent transporter for catecholamines, identified as a norepinephrine transporter, is expressed in the brain of the teleost fish medaka (Oryzias latipes).

    No full text
    We report the isolation, functional characterization, and localization of a Na(+)/Cl(-)-dependent catecholamine transporter (meNET) present in the brain of the teleost fish medaka. This carrier is very similar to the human neuronal norepinephrine transporter (NET) and the human neuronal dopamine transporter (DAT), showing 70 and 64% amino acid identity, respectively. When expressed in COS-7 cells, this transporter mediates the high-affinity uptake of dopamine (K(M) = 290 nM) and norepinephrine (K(M) = 640 nM). Its pharmacological profile reveals more similarities with NET, including a high affinity for the tricyclic antidepressants desipramine (IC(50) = 0.92 nM) and nortriptyline (IC(50) = 16 nM). In situ hybridization on the medaka brain shows that meNET mRNA is present only in a subset of tyrosine hydroxylase-positive neurons found in the noradrenergic areas of the hindbrain, such as the locus ceruleus and area postrema. None of the dopaminergic areas anterior to the isthmus contains any labeled neurons. Neither reverse transcriptase-polymerase chain reaction with degenerate primers specific for gamma-aminobutyric acid transporter/NET nor autoradiographic experiments with [(125)I]3b-(4-iodophenyl)-tropane-2b-carboxylic acid methyl ester revealed an additional catecholamine transporter in the medaka brain. Uptake experiments with medaka brain synaptosomes show an endogenous transport with a pharmacological profile identical to that of the recombinant meNET. Thus, meNET is probably the predominant--if not the only--catecholamine transporter in the medaka fish brain. In view of the highly conserved primary structures and pharmacological properties of meNET, it is tempting to speculate that a specific dopamine transport developed later in vertebrate evolution and probably accompanied the tremendous enlargement of the meso-telencephalic dopaminergic pathways in amniotes
    corecore