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Abstract 

High voltage activated calcium channels are hetero-oligomeric protein complexes that mediate 

multiple cellular processes including the influx of extracellular Ca
2+

, neurotransmitter release, 

gene transcription and synaptic plasticity. These channels consist of a primary α1 pore-forming 

subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary 

subunit, which alter the gating properties and trafficking of the calcium channel. The cellular 

localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study, using RT-

PCR a single band at ~305 bp corresponding to the predicted size of the α2δ3 subunit fragment 

was in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain 

homogenates showed a single 123 kDa band. Immunohistochemistry using an affinity purified 

antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer 

(GCL) and inner nuclear layer (INL), and immunoreactive processes in the inner plexiform layer 

(IPL) and the outer plexiform layer (OPL). α2δ3 immunoreactivity was localized to multiple cell 

types, including ganglion, amacrine and bipolar cells, and photoreceptors, but not by horizontal 

cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests this 

subunit participates widely in Ca channel-mediated signaling in the retina. 
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Introduction 

 

High voltage activated (HVA) calcium
 
channels are transmembrane proteins comprised of an α1 

subunit that contains the channel pore and voltage-sensor, and α2δ and β auxiliary subunits 

(reviewed in Catterall, 2000). The α1 subunits establish the biophysical and pharmacological 

properties of the calcium channel (Catterall, 2000). The α2δ genes (CACNA2D1-4) encode four 

different α2δ subunits, α2δ1-α2δ4 (Klugbauer et al., 1999). The predominantly, extracellular α2δ 

subunits regulate plasma membrane trafficking and expression of the α1 subunit as well as 

altering the biophysical properties of the channel (reviewed in Davies et al., 2007; Bauer et al., 

2010; Dolphin, 2012).  

 

The α2δ subunits are expressed differentially in the brain (Klugbauer et al., 1999; Barclay et al., 

2001; Brodbeck et al., 2002; Cole et al., 2005) and retina (Nakajima et al., 2009; Huang et al., 

2013; Pérez de Sevilla Müller et al., 2013). α2δ1 mRNA is reported in mouse cerebellar, 

hippocampal and cortical extracts (Klugbauer et al., 1999; Cole et al., 2005). In the central 

nervous system (CNS), α2δ1 subunit immunoreactivity is observed at all levels of the neuroaxis, 

including the spinal cord, brain stem, thalamus and forebrain (Taylor and Garrido, 2008). In 

hippocampus, α2δ1 subunit immunostaining is heterogeneous with a greater density in areas 

having glutamate terminals (Taylor and Garrido, 2008). In the rat retina, the majority of ganglion 

cells, as well as amacrine, bipolar and horizontal cells express the α2δ1 subunit (Huang et al., 

2013). In addition, Müller cells and astrocytes express the α2δ1 subunit (Huang et al., 2013). In 

the mouse and rat CNS, α2δ2 mRNA is strongly expressed in cerebellar Purkinje cells and in 

interneurons of the cortex, hippocampus and striatum (Barclay et al., 2001; Brodbeck et al., 

2002; Cole et al., 2005). There are no reports that we are aware of concerning α2δ2 

immunoreactivity in the retina. α2δ3 mRNA expression was initially reported to be restricted to 

multiple regions of the mouse CNS (Angelotti and Hofmann, 1996; Klugbauer et al., 1999). A 

subsequent study however, reported α2δ3 mRNA expression in ON bipolar cells of the mouse 

retina using in situ hybridization histochemistry (Nakajima et al., 2009). In addition, α2δ3 subunit 

expression has been detected in rat atria (Chu and Best, 2003) and human heart, skeletal muscle 

and kidney (Gong et al., 2001). Finally, the gene encoding the α2δ3 subunit has been implicated 
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as a tumor suppressor gene in human gastric cancer cells (Wanajo et al., 2008). The α2δ4 subunit 

is expressed in non-neuronal endocrine cells (Arikkath and Campbell, 2003; Klugbauer et al., 

2003). Recently, we reported α2δ4 mRNA in mouse and rat CNS and retina; α2δ4 subunit 

immunostaining was present in Müller cells and a few displaced ganglion cells, as well as ON 

bipolar cell dendritic tips and photoreceptor terminals (Pérez de Sevilla Müller et al., 2013). α2δ4 

subunit immunoreactivity has also been localized to salamander photoreceptor terminals (Mercer 

et al., 2011). Interestingly, a mutation in the Cacna2d4 gene has been implicated in a novel cone-

rod retinal disease in mouse (Ruether et al., 2000; Wycisk et al., 2006a, b).  

 

The goal of the present study was to establish the expression and cellular localization of the α2δ3 

subunit in rat and mouse retina. α2δ3 mRNA was detected in retina and brain by RT-PCR and a 

single band corresponding to the predicted size of the α2δ3 subunit was detected in retina and 

brain extracts on Western blots. Cell bodies in the ganglion cell layer (GCL) and inner nuclear 

layer (INL) contain α2δ3 subunit immunoreactivity, and processes in the inner plexiform layer 

(IPL) and puncta in the outer plexiform layer (OPL) have strong α2δ3 subunit immunoreactivity. 

Double-label immunostaining experiments demonstrated the expression of α2δ3 subunit in all 

retinal cell types except Müller and horizontal cells. These findings suggest that the α2δ3 subunit 

has a broad influence in the retina, and mediates HVA channel properties that would affect 

intracellular signaling pathways, neurotransmitter release, neuronal excitation, synaptic 

stabilization and synaptogenesis (Arikkath and Campbell, 2003; Dickman et al., 2008; Eroglu et 

al., 2009; Kurshan et al., 2009). 
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Methods and Materials 

 

Animal preparation: All experiments were carried out in accordance with the guidelines for the 

welfare of experimental animals issued by the U.S. Public Health Service Policy on Human Care 

and Use of Laboratory Animals and the University of California-Los Angeles (UCLA) Animal 

Research Committee. Adult Sprague-Dawley rats (100–300 g, Charles River, Wilmington, MA, 

RRID:RGD_734476), and wild-type C57BL/6 mice (20–30 g; Jackson Laboratory, Bar Harbor, 

ME, RRID:IMSR_JAX:000664) of both sexes were used for these studies. Animals were 2-3 

months old at the time of the experiments. 

 

Animals were deeply anesthetized with 1–3% isoflurane (Abbott Laboratories, North Chicago, 

IL), and killed by decapitation or cervical dislocation. The eyes were removed and dissected in 

Hibernate A (Invitrogen, Carlsbad, CA). For vertical cryosections of the retina, the eyecups were 

fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB), pH 7.4, for 15–60 minutes 

at room temperature (RT). Eyecups were then transferred to 20% sucrose in PB for an hour or 

30% sucrose in PB overnight at 4°C. The eyecups were embedded in optimal cutting temperature 

medium (Sakura Finetek Inc., Torrance, CA) and sectioned at 12–14 µm using a Leica CM3050S 

or Leica CM 1900 cryostat (Leica Microsystems, Buffalo Grove, IL) and tissue sections were 

mounted onto gelatin-coated slides. Sections were stored at -20
o
C until immunostaining. 

 

Whole-mount immunostaining: Retinas were dissected from the eyecup and mounted on 

cellulose filter paper (EMD Millipore, Temecula, CA) with the GCL up and fixed in 4% PFA for 

10 minutes. The whole-mounted retinas were then washed in PB three times for a total of 90 

minutes and incubated in 10% normal goat serum at 4°C overnight. The retinas were 

subsequently incubated in primary antibody (see Table 1) for 5–7 days at 4°C and washed three 

times for a total of 90 minutes in 0.1 M PB. The retinas were placed in the appropriate secondary 

antibody overnight at 4°C. After three washes for a total of 90 minutes in PB, the retinas were 

mounted in Vectashield Mounting Medium (Vector Laboratories, Burlingame, CA). Coverslips 

were sealed with nail polish. Slides were stored at 4°C and protected from light. 
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Immunostaining of cryosections of the retina: Retinal sections were incubated in 10% normal 

donkey serum (NDS) or normal goat serum (NGS) diluted 1:15 in PB with 0.3-0.5% Triton X-

100 for 1-2 hours at RT. Sections were then placed in the primary antibody (see Table 1) diluted 

in PB with 0.3-0.5% Triton X-100 and 0.1% NaN3 overnight at 4°C. After the primary 

incubation, the sections were washed three times for a total of 30 minutes in PB and placed in 

their corresponding secondary antibodies, Alexa Fluor 488-, 555- or 594–rabbit IgG, Alexa Fluor 

555–mouse IgG, Alexa Fluor 546–goat IgG, Alexa Fluor 488–rat IgG (Invitrogen) at 1:500-

1:1000 dilutions for 2 hours at RT. After a final wash for a total of 30 minutes, the sections were 

mounted in Vectashield (Vector Laboratories, Burlingame, CA), Aqua Poly/Mount mounting 

medium (Polysciences, Inc., Warrington, PA) or Citifluor (Citifluor Ltd; London, UK).  

 

To evaluate the specificity of the primary antibody immunostaining, a preadsorption control was 

performed. Briefly, the α2δ3 antibody was diluted in 0.1 M PB containing 0.3% Triton X-100 

with a Protein Epitope Signature Tag (PrEST) antigen of human Cacna2d3 (Atlas Antibodies 

AB, Stockholm, Sweden) at a final concentration of 1 µg/ml for 12 hours at RT. This antigen is 

fused to a dual tag consisting of the His6 tag and albumin-binding protein. The antibodies 

directed against the dual tag were depleted before capturing the antigen (Cacna2d3)-specific 

antibodies in a separate purification step (manufacture’s datasheet). No immunostaining was 

present in sections incubated with the preabsorbed α2δ3 subunit antibody, demonstrating the 

specificity of the antibody (see Results). Except for the α2δ3 subunit antibody, all the antibodies 

employed in this study have been used previously with paraformaldehyde-fixed tissue; our 

immunostaining patterns were identical to those previously reported earlier (Haverkamp and 

Wässle, 2000; Deng et al., 2001; Johnson et al., 2003; Martínez-Navarrete et al, 2008; Pérez de 

Sevilla Müller et al., 2013). Control experiments for non-specific binding of the secondary 

antibodies omitted the primary antibodies were in both single and double labeling studies.  

  

Antibody characterization (Table 1): 

A polyclonal rabbit antibody (cat. #HPA030850; Sigma-Aldrich, St. Louis, MO, 

RRID:AB_10600764) to the human α2δ3 peptide sequence was used to detect α2δ3 subunit 

immunoreactivity. The antibody was characterized by Western blot analysis (Fig. 1B). The 

antibody detected a single protein band at 123 kDa corresponding to the apparent molecular mass 
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of the α2δ3 subunit under nonreducing conditions (mouse: 

http://www.uniprot.org/uniprot/Q9Z1L5; rat: http://www.uniprot.org/uniprot/Q8CFG5). 

Specificity of the α2δ3 subunit antibody was also demonstrated in mouse and rat retinal sections 

incubated in the primary antibody preadsorbed with the α2δ3 PrEST antigen. Immunostaining 

was absent in these sections (see Results). 

 

A mouse monoclonal antibody against the Bassoon protein (cat. #SAP7F407; Enzo Life 

Sciences, Farmingdale, NY, RRID:AB_10618753) detected a 400 kDa band on a Western blot of 

the mouse and rat brain (manufacturer's data sheet). The Bassoon monoclonal antibody is a well-

established marker of photoreceptor ribbons and immunostaining is not detected in Bassoon 

knockout retinas (Brandstätter et al.,1999; Dick et al.,2003). 

 

A mouse monoclonal antibody against calbindin (cat. #C9848, cl. CB-955, Sigma-Aldrich, 

RRID:AB_2314065) was raised against purified bovine kidney calbindin-28K. Calbindin 

recognized a specific 28 kDa protein on Western blots of mouse brain extracts and 

immunostaining was absent in the cerebellum of calbindin D-28K knockout mice 

(manufacturer's data sheet). No cross-reactivity was observed with other EF-hand-containing 

proteins (e.g., calbindin-9K, calretinin, myosin light chain, parvalbumin, S-100a/b/A2/A6; 

manufacturer's datasheet). The specificity of this calbindin antibody has been documented 

previously and it has been used to identify horizontal cells in the rodent retina (Peichl and 

González-Soriano, 1994; Haverkamp and Wässle, 2000; Hirano et al., 2011). 

 

A goat polyclonal affinity-purified antibody to Chx10 (cat. #sc-21690; Santa Cruz 

Biotechnology, clone: N-18, Santa Cruz, CA, RRID:AB_2216006) was raised against a peptide 

corresponding to human Chx1044–61 (PPSSHPRAALDGLAPGHL). The Chx10 antibody detects 

a single 46 kDa band on a Western blot of mouse eye extracts corresponding to the predicted size 

of Chx10 (manufacturer's datasheet). Chx10 recognizes bipolar cells and a subset of Müller cells 

in the retina (Liu et al., 1994; Rowan and Cepko, 2004; Elshatory et al., 2007; Whitaker and 

Cooper, 2009).  
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A mouse monoclonal antibody against the C-terminal binding protein 2 (CtBP2) (cat. #612044; 

BD Biosciences, San Jose, CA, RRID:AB_399431) detected a 48 kDa band on a Western blot of 

rat brain membrane fractions corresponding to the predicted size of CtBP2 (tom Dieck et al., 

1998). This monoclonal antibody recognizes synaptic ribbons in photoreceptors and bipolar cells 

of mouse, cow and monkey retinas (Schmitz et al., 2000; tom Dieck et al., 2005; Jusuf et al., 

2006; Puller et al., 2007). 

 

A mouse monoclonal antibody to GAD67 (cat. #MAB5406; EMD Millipore,RRID:AB_2278725) 

detected a single band at 67 kDa on Western blots of rat cortex (Erlander et al., 1991). This 

antibody does not cross-react with the GAD65 isoform in a Western blot of rat cortex (Fong et al., 

2005). In addition, immunostaining in the brain showed an overall decrease in a conditional 

GAD67 knockout mutant (Heusner et al., 2008). The antibody stains GABA immunoreactive 

amacrine cells in the retina (Guo et al., 2010; Delgado et al., 2009). 

 

A rat polyclonal antibody to glycine (cat. #IG1002, ImmunoSolution, Queensland, Australia, 

RRID:AB_10013222) detected by dot blotting the same amino acid-PFA-thyroglobulin 

conjugate that was used to immunize the animals. This antibody detected on dot blots conjugates 

containing glycine, but not conjugates with related amino acids (Pow et al., 1995). 

Immunostaining was absent following preabsorption with a PFA conjugate of glycine and 

thyroglobulin (Pow et al., 1995). This antibody selectively immunostains amacrine cells in the 

retina of multiple species, including mouse and rat (Pow and Hendrickson, 1999; Haverkamp 

and Wässle, 2000). 

 

A mouse monoclonal antibody to Goα (cat. #MAB3073; EMD Millipore, RRID:AB_94671) 

detected a single band of 42–43 kDa in homogenates of the olfactory epithelium and the 

vomeronasal organ in Xenopus laevis and Bufo japonicas (Hagino-Yamagishi and Nakazawa, 

2011). In the retina, Goα is expressed in rod and cone ON-type bipolar cells (Haverkamp and 

Wässle, 2000; Dhingra et al., 2000). 

 

A guinea pig polyclonal antibody to metabotropic glutamate receptor 6 (mGluR6) (cat. 

#GP13105; Neuromics, Northfield, MN, RRID:AB_2341540) was raised to a peptide 
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corresponding to the rat C terminal mGluR6859-871 (AAPPQNENAEDAK; manufacture’s 

datasheet). mGluR6 is selectively expressed at the dendritic tips of ON bipolar cells (tom Dieck 

et al., 2012). 

 

A mouse monoclonal antibody to protein kinase C (PKC) (cat. #K01107M; Biodesign 

International, Saco, ME, RRID:AB_2313750) was raised against PKCα (79–80 kDa) from 

purified bovine brain. This antibody reacts with PKC-alpha/beta-1/beta-2 isoforms 

(manufacturer's data sheet). The PKC antibody recognized the purified PKC protein, as well as 

an 80 kDa band on Western blots from whole-cell extracts of rat glioma and murine NIH3T3 cell 

lines. The antibody specifically immunoprecipitates PKC from cell lysates of 328 glioma and 

SVK 14 cell lines (Young et al.,1988). PKC is a marker for rod bipolar cells in the mouse and rat 

retina (Haverkamp and Wässle, 2000; Ghosh et al., 2001; Haverkamp et al., 2003). 

Immunostaining was completely eliminated by the full-length peptide, but was not by unrelated 

peptides (Young et al., 1988).  

 

A second mouse monoclonal antibody to PKCα (cat. #sc-80, Santa Cruz Biotechnology, 

RRID:AB_628141) was raised against purified bovine PKC, and its epitope mapped to its hinge 

region (amino acids 296–317). The antibody recognizes a single band of 80 kDa on Western 

blots of human cell lines (manufacturer’s data sheet) and it has been previously used to 

demonstrate rod bipolar cells in rodent retinas (Martínez-Navarrete et al., 2007). 

 

A mouse monoclonal antibody to postsynaptic density protein 95 (PSD-95) (cat. #MAB1596, 

EMD Millipore, RRID:AB_2092365) detected a single band at ~100 kDa, corresponding to the 

apparent molecular weight of PSD-95 on sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) immunoblots of rat, mouse, and bovine brain (manufacturer's data 

sheet). The PSD-95 antibody recognized a major band at ~95 kDa and a minor band at ~80 kDa 

on Western blots of mouse and rat brain (manufacturer's data sheet). PSD-95 immunoreactivity 

is localized to photoreceptor terminals and postsynaptically to bipolar cell ribbon synapses in the 

IPL (Pérez de Sevilla Müller et al., 2013; Koulen at al., 1998). 
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A guinea pig polyclonal antibody to RNA binding protein with multiple splicing (RBPMS) (cat. 

#: 1832-RBPMS, PhosphoSolutions, Aurora, CO, RRID:AB_2395389) labeled a single band of 

the expected molecular size of ~24 kDa on Western blots of mouse and rat retinal extracts. No 

RBPMS immunostaining was present in tissues incubated with the RBPMS antibodies 

preabsorbed with RBPMS4-24. The affinity purified antibody was shown to exclusively 

immunostain ganglion cells in mouse and rat retina (Rodriguez et al., 2014). 

 

A mouse monoclonal antibody to the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) 

(cat. #131 011; Synaptic Systems, Goettingen, Germany, RRID:AB_10890167) recognizes a 

single band of the expected molecular size of 57 kDa (McIntire et al., 1997; Sagné et al., 1997) 

on Western blots of mouse brain and retina extracts (Guo et al., 2009). Preadsorption of this 

antibody with the VGAT N-terminus peptide [VGAT75-87 (AEPPVEGDIHYQR)] used for 

immunization eliminated the VGAT signal on a Western blot (manufacturer's data sheet) and 

abolished specific VGAT immunolabeling in mouse retina (Guo et al., 2009). This antibody 

immunostains amacrine and displaced amacrine cells and their processes in the IPL, and 

horizontal cells and their endings in the OPL in mouse retina (Guo et al., 2009). 

 

A guinea pig polyclonal antibody to the vesicular glutamate transporter 1 (VGluT1) (cat. 

#AB5905; EMD Millipore, RRID:AB_2301751) recognizes a single band of the expected 

molecular size of 62 kDa on Western blots of rat hippocampal membranes (McIntire et al., 1997; 

Sagné et al., 1997; Pacheco Otalora et al., 2006) and immunostains photoreceptor and bipolar 

cell axon terminals in mouse retina (Bellocchio et al.,1998; Sherry et al., 2003). Preadsorption of 

the VGluT1 antiserum with the peptide used for the immunization eliminates specific 

immunostaining (Fyk-Kolodziej et al., 2004). Immunostaining was completely absent in retinae 

of VGluT1 null mice (Johnson et al., 2007). 

 

RT-PCR: Total RNA was isolated from mouse and rat retina and brain homogenates using 

the Absolutely RNA Miniprep Kit (Agilent Technologies, Santa Clara CA, USA) according to 

the manufacturer's instructions. RNA concentrations were determined photometrically. The 

isolated total RNA (1.0 µg) was used as a template for first-strand cDNA synthesis by using 

oligo(dT) to prime Superscript III First-Strand Synthesis System for RT-PCR, according to the 
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manufacturer’s instructions (Invitrogen). PCR was performed with primers specific for the α2δ3 

transcript in rat and mouse, adapted from Schlick et al (2010): forward: 5’-

gtatgaatacttcaatgctgtgctg-3’ and reverse: 5'-atttaatccctgggtactgtctga-3’. Primer set corresponded 

to nucleotide positions 381 to 685 in rat and 478 to 782 in mouse, covering exons 4 through 7 of 

α2δ3 mRNA (NCBI Reference Sequences: NM_175595.2 and NM_009785.1, respectively). 

Expected fragment size was 305 bp. 

 

PCR was performed in a 20 µl reaction volume containing 0.25 µM of each primer, 0.1 units/µl 

of EconoTaq DNA Polymerase, 400 µM dATP, 400 µM dGTP, 400 µM dCTP and 400 µM 

dATP, 3 mM MgCl2 (Lucigen Corporation, Middleton, WI, USA) with 2 µl (1/10th) of the 

cDNA synthesis reaction as template. The following temperature protocol was used: 2 minutes at 

96°C, 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C, 1 minute at 72°C, followed by a final 

extension of 5 minutes at 72°C. 5 µl of the PCR was electrophoresed on a 1.5% agarose gel in 

1X TAE (40 mM Tris-acetate, 1 mM EDTA buffer). DNA was visualized using Gel Red 

(1:10,000) (Biotium, Hayward, CA, USA).  

 

Western Blots: Rodent retina and brain samples were isolated and placed immediately in dH2O 

containing 1.5M Tris-HCl, 0.5M EDTA, 0.5M EGTA and 20% Triton X-100 on dry ice. Six 

mouse retinas or four rat retinas were prepared together. Cell lysis buffer contained 10 µl/ml Halt 

Protease Inhibitor and 10 µl/ml Halt Phosphatase Inhibitor cocktails (Thermo Fisher Scientific, 

Waltham, MA, USA). Samples were homogenized for 2 minutes and incubated on ice for 20 

minutes to lyse cells. After centrifugation (20,100xg; 30 minutes at 4°C), the supernatant 

fractions were removed. The NanoDrop Spectrophotometer (Thermo Fisher Scientific) was used 

to measure protein content of the samples. Protein samples were diluted in Laemmli sample 

buffer, pH 6.8, and samples were boiled for 10 minutes before loading onto the gel.  

 

Western blot analysis of the homogenates was performed after fractionating 35 µg of protein by 

4-20% SDS-PAGE (200V for 30 minutes) using Mini-PROTEAN
®

 TGX™ precast 

polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA). Pre-stained marker proteins 

were used as molecular mass standards. The separated proteins were transferred to PVDF 

Immobilon-FL membranes (EMD Millipore) by electroblotting at 360 mA for 2 hours at 4°C. 
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Blots were allowed to dry completely to increase protein retention before blocking binding sites 

with a non-mammalian Odyssey Blocker (LI-COR Biosciences, Lincoln, NE) for 45 minutes at 

RT. Blots were then incubated with α2δ3 antibodies (see Table 1) at 1:200 in blocking buffer for 

2 hours at RT. Blots were rinsed in a solution containing 0.1 M PB, 0.154 M NaCl and 0.05% 

Tween 20 (v/v) at pH 7.4 for 30 minutes, and incubated in donkey anti-rabbit IgG conjugated 

IRDye 680RD (LI-COR) diluted 1:10,000, for 1 hour at RT. The blots were washed and 

immediately imaged and evaluated using the LI-COR Odyssey
®

 Infrared Imaging System. 

 

Measurements of distances: The linear distance of α2δ3 immunoreactive puncta to the closest 

labeled bipolar and horizontal cell tip, and photoreceptor terminal was measured using Zeiss 

LSM 510 proprietary software (RRID:SciEx_11637). The line tool was utilized to measure the 

distance from the outermost portion of immunoreactive α2δ3 puncta and the respective closest 

bipolar or horizontal cell tip. Images were analyzed from single scans taken with  a Zeiss Plan-

Neofluar 63x 1.4 NA corrected oil objective and a z-axis step of 0.3 or 0.33 µm and a pinhole 

size of 112 µm. At least ten measurements were taken and averaged.  

 

Fluorescent image acquisition and colocalization analysis: Immunostaining was evaluated 

using a Zeiss Laser Scanning Microscope 510 Meta, Zeiss LSM 710 (Carl Zeiss, Thornwood, 

NY, RRID:SciEx_11637) or Leica TCS SP2 laser-scanning confocal microscope 

(RRID:nlx_156339) with a Zeiss C-Apochromat 40x 1.2 NA corrected water objective, a Zeiss 

Plan-Neofluar 63x 1.4 NA corrected oil objective or a Leica HCX PL APO 63x/1.4-0.6 Oil Lbd 

BL at a resolution of 1024×1024 pixels. Images are presented in the figures either as single 

image scan or as projections of 3–8 image scans (z-axis step between 0.3-0.5 µm). Confocal 

images were analyzed using Zeiss LSM 510 proprietary software (version 3.2). The intensity 

levels and contrast of the final images were adjusted in Adobe Photoshop CS2 v.9.02 (Adobe 

Systems, San Jose, CA).  
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Results 

 

The α2δ subunits are a group of auxiliary calcium channel subunits that modify the properties of 

the α1 pore-forming and sensor subunit (Davies et al. 2007). In this study, we report the 

expression and localization of the α2δ3 subunit in the mouse and rat retina. 

 

Presence of α2δ3 mRNA: From mouse and rat retinal and brain extracts, RT-PCR (n=5 retinas) 

yielded a strong single band at ~305 bp corresponding to the predicted size of the α2δ3 subunit 

fragment. As a control experiment, water was used in place of template DNA, and no DNA 

amplification was observed (Fig. 1A). These findings indicate the presence of α2δ3 mRNAs in 

the retina and brain. 

 

Specificity and characterization of the α2δ3 subunit antibody 

Then, we performed Western blots to determine the presence of the α2δ3 subunit protein in the 

retina. Since α2δ3 mRNA is reported in multiple regions of the mouse CNS (Angelotti and 

Hofmann, 1996; Klugbauer et al., 1999; Gong et al., 2001), the brain was used as a positive 

control for our Western blots. Western blotting of mouse (n=6 retinas) and rat retina (n=4 

retinas) and brain homogenates showed one labeled band corresponded to a molecular weight of 

~123 kDa in membrane fractions of mouse and rat brain and retina (Fig. 1B).  

 

Immunohistochemical localization of α2δ3 subunit in rodent retinae  

α2δ3 subunit immunoreactivity was present in cell bodies in the GCL (Fig. 2A, C; arrowheads) 

and INL (Fig. 2A, C; arrows), and there was weak immunostained processes in the IPL, and 

strong immunostained puncta in the OPL. The α2δ3 subunit immunostaining pattern was similar 

for both rat (Fig. 2A) and mouse (Fig. 2C) retina. The α2δ3 subunit antibody labels cell bodies in 

the GCL that differ in their size, suggesting multiple retinal ganglion cell (RGC) populations 

and/or displaced amacrine cells. Immunostained cell bodies located in the proximal INL near the 

IPL likely correspond to amacrine cells and cell bodies located in the middle of the INL likely 

correspond to bipolar cells. The strong immunoreactive puncta detected in the OPL of the mouse 

retina could correspond to photoreceptor terminals. Outer segments of photoreceptors were 

occasionally stained in both species due to non-specific labeling by the secondary antibody. 
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Specificity of the antibody was demonstrated by the absence of immunostaining in sections 

incubated with antibodies preabsorbed with the immunization peptide (Fig. 2B, D). 

 

Identification of α2δ3-immunoreactive ganglion and amacrine cells  

To characterize the α2δ3-expressing cell bodies in the GCL, we immunostained whole-mount 

retinas from rats (n=7 retinas) and mice (n=5 retinas). The α2δ3 subunit immunostaining revealed 

cell bodies with somal diameters that varied from 7 to 25 µm in the rat (Fig. 3A; n=7 retinas) and 

mouse (Fig. 3D; n=5 retinas) GCL, suggesting that α2δ3-expressing cells belong to different cell 

populations. Most α2δ3-immunoreactive cell bodies in the GCL are likely to be RGCs based on 

the size of their cell somal diameters. There may also be some displaced amacrine cells that 

express this subunit based on the presence of some cells with a somal diameter measuring less 

than 10 µm in diameter (Pérez de Sevilla Müller et al., 2007). 

 

To test if the α2δ3-expressing cells in the GCL are RGCs, whole-mounted rat (n=6 retinas) and 

mouse (n=3 retinas) retinas were immunostained with α2δ3 subunit and RBPMS antibodies. 

RBPMS is a selective marker of all RGCs in rat and mouse retina (Kwong et al., 2010; 

Rodriguez et al., 2014). All RBPMS-immunoreactive cells contained α2δ3 subunit 

immunoreactivity, indicating that RGCs express this auxiliary Ca subunit in rat (Fig. 3A-C) and 

mouse (Fig. 3D-F). In addition, many of the small diameter α2δ3-immunoreactive cells in the 

GCL were not RBPMS immunoreactive (Fig. 3C, F, arrows) suggesting they are displaced 

amacrine cells (Jeon et al., 1998; Pérez de Sevilla Müller et al., 2007; Lin and Masland, 2006; 

Perry and Walker, 1980; Perry, 1981).  

 

Amacrine cells are composed of multiple types and most express either GABA or glycine 

immunoreactivity (Wässle and Boycott, 1991; Kay et al., 2011). Vertical sections were stained 

with antibodies to the glutamic acid decarboxylase 67 isoform (GAD67), a GABA synthesizing 

enzyme (Schnitzer and Rusoff, 1984). Numerous somata in the GCL and the proximal INL were 

GAD67 immunoreactive in both rat (Fig. 4B) and mouse (Fig. 4E) retina. In the rat retina, ~23% 

of the GAD67 immunostained cells contained α2δ3 subunit immunoreactivity in the GCL and in 

the mouse retina ~42% of the GAD67 immunostained cells contained α2δ3 subunit 

immunoreactivity in the GCL (arrowheads). In addition, ~59% and 50% of GAD67 
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immunostained cell bodies in the GCL did not contain α2δ3 subunit immunoreactivity (arrows) in 

rat and mouse, respectively suggesting the presence of displaced amacrine cells that do not 

express the α2δ3 subunit.  

 

In summary, these findings indicate that α2δ3 subunit immunoreactive cells in the GCL are 

expressed by all RGCs and some displaced amacrine cells. 

 

Characterization of α2δ3-immunoreactive cell bodies in the INL 

The common amacrine cell markers, GABA and glycine, and the bipolar cell and Müller cell 

marker, Chx10 were used to determine whether the α2δ3-expressing cell bodies in the INL are 

expressed by amacrine and bipolar cells. In the rat retina, ~60% of the α2δ3 subunit 

immunoreactivity cells contained GAD67 in the INL (Fig. 4A-C, arrowheads). In the mouse 

retina, ~68% of the α2δ3 containing cells expressed GAD67 immunoreactivity in the INL (Fig. 

4D-F, arrowheads). In addition, ~80% and ~53% of GAD67 immunostained cell bodies in the 

INL did not contain α2δ3 subunit immunoreactivity (arrows) in rat and mouse, respectively, 

suggesting the presence of amacrine cells that do not express the α2δ3 subunit.  

 

Some α2δ3 immunoreactive cell bodies in the proximal INL contain glycine immunoreactivity in 

rat (Fig. 5A-C, double arrowheads) and mouse (Fig. 6A-C, double arrowheads) retina. The 

expression of the α2δ3 subunit by AII amacrine cells in the rat retina was tested by double 

immunostaining studies with the parvalbumin (PV) antibody, which labels AII amacrine cells in 

the rat retina (Wässle et al., 1993). PV-immunoreactive AII amacrine cells do not express the 

α2δ3 subunit (not shown). Immunostaining against glycine also showed bipolar cells in rat, which 

were not positive for α2δ3-expressing bipolar cells (Fig.5A-C (rat) and Fig.6A-C (mouse), 

arrow), however some α2δ3-immunoreactivity could be observed in some glycinergic-bipolar 

cells [Fig.5A-C (rat) and Fig.6A-C (mouse), arrowhead].  

 

Double label immunostaining studies with antibodies to the α2δ3 subunit and Chx10, a pan-

bipolar cell and Müller cell marker (Liu et al., 1994; Rowan and Cepko, 2004; Elshatory et al., 

2007; Whitaker and Cooper, 2009) were used to evaluate α2δ3-immunoreactive bipolar cells. The 

majority of Chx10-immunoreactive bipolar cells contained α2δ3 subunit immunoreactivity in rat 
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(Fig. 5D-F, arrows) and mouse (Fig. 6D-F, arrows) retina. These findings are consistent with 

earlier in situ hybridization histochemical findings (Nakajima et al. 2009), which report α2δ3 

subunit mRNAs in mouse bipolar cells. In addition, double immunostaining studies with the 

antibodies to the α2δ3 subunit and PKCα, a marker for rod bipolar cells and DA amacrine cells 

(Negishi et al., 1998; Haverkamp and Wässle, 2000) revealed α2δ3-immunoreactive cell bodies 

with PKCα immunoreactivity in rat (Fig. 5G-I, arrows) and mouse (Fig. 6G-I, arrows) retina.  

 

In summary, these findings indicate a differential expression of the α2δ3 subunit in glycine- and 

GABA-immunoreactive amacrine cells, and the expression of the α2δ3 subunit in most bipolar 

cells in the rodent retina.  

 

Expression of the α2δ3 subunit puncta in the mouse outer retina 

To evaluate the localization of the α2δ3 subunit in the OPL, we performed double-labeling 

experiments with specific neuronal markers for bipolar and horizontal cells, and photoreceptors 

in mouse retina.  

 

The localization of the α2δ3 subunit to bipolar cell dendrites was tested by double 

immunostaining studies with an antibody to PKCα (Fig. 6G-I, arrowheads), to mGluR6, which is 

localized to the tips of ON-bipolar cell dendrites (tom Dieck et al., 2012; Fig. 7A-D) and to Goα, 

a marker for ON bipolar cells (Vardi, 1998; Haverkamp and Wässle, 2000; Fig. 7E-H). The α2δ3 

subunit puncta were adjacent to the bipolar cell tips without any overlap in single sections, 

suggesting they are not located on the distal dendrites of ON bipolar cells. Most α2δ3 subunit 

puncta were located greater than 0.24±0.09 µm from the nearest ON bipolar cell tip. 

 

To test if α2δ3 subunit immunoreactivity is localized to horizontal cells, retinal sections were 

double immunostained with antibodies to the α2δ3 subunit, and to calbindin, a specific horizontal 

cell marker (Röhrenbeck et al., 1987; Chun and Wässle, 1993; Massey and Mills, 1996; 

Haverkamp and Wässle, 2000; Hirano et al., 2005) and to VGAT, which is mainly located to 

horizontal cell endings (Cueva et al., 2002; Guo et al., 2010; Lee and Brecha, 2010). α2δ3 

immunoreactive puncta were found in the OPL adjacent to horizontal cell processes indicating 

that they are not expressed by horizontal cells (Fig. 8A-D; Fig. 8E-H). In addition, double 
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immunostaining with α2δ3 and calbindin or VGAT revealed that α2δ3 immunoreactive puncta 

were located at a distance of 0.4±0.1 µm from the closest horizontal cell process.  

 

To test if α2δ3 subunit immunoreactivity is localized to photoreceptor terminals, retinal sections 

were double stained with antibodies to the α2δ3 subunit and FITC-peanut agglutinin (PNA), a 

specific marker for mouse cone pedicle bases (Blanks and Johnson, 1983). Single scan 

immunohistochemical analysis revealed that the α2δ3 subunit is not located at PNA-labeled cone 

pedicles (Figure 9A-D). The average distance between the closest α2δ3 subunit and the PNA-

labeled cone pedicle was 1.4±0.2 µm. 

 

Double label studies with antibodies to Bassoon and to CtBP2, which are presynaptic proteins 

associated with the synaptic ribbon in both rod spherules and cone pedicles (Schmitz et al., 2000; 

Brandstätter et al., 1999) were used to determine if this subunit is expressed at or near 

photoreceptor ribbons. Some α2δ3 and Bassoon immunoreactive profiles (Fig. 9E-H, arrowheads) 

overlapped, however, the majority of the α2δ3 immunostained puncta were adjacent to Bassoon 

immunostained puncta, which are located at the base of the synaptic ribbon (Brandstätter et 

al.,1999) (Fig. 9E-H, arrows). α2δ3 immunoreactive puncta were also adjacent or overlapping 

with CtBP2-immunoreactivity in photoreceptors (Fig. 9I-L, arrows).  

 

Finally, double label studies with antibodies to PSD-95, which is located in the plasma 

membrane of rod and cone photoreceptor terminals (Koulen et al., 1998; Pérez de Sevilla Müller 

et al., 2013) and the vesicular glutamate transporter 1 (VGluT1), which is expressed highly in 

photoreceptor terminals (Johnson et al., 2003; Sherry et al., 2003) were also used to determine if 

α2δ3 subunit immunoreactivity is located at photoreceptor terminals. Single scans of the α2δ3 

subunit and PSD-95 immunostaining (Fig. 10A-D) and VGluT1 (Fig. 10E-H) showed that PSD-

95 and VGluT1 immunoreactive photoreceptor terminals contain all the α2δ3 immunoreactive 

puncta, indicating that the α2δ3 puncta in the OPL is located in rod and cone photoreceptor 

terminals. Together these findings suggest that α2δ3 subunits are located at or near the 

photoreceptor ribbon (see Discussion).   
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Discussion 

 

The presence of α2δ1 (Huang et al., 2013) and α2δ4 (Ruether et al., 2000; Wycisk et al., 2006a,b; 

Mercer et al, 2011; Pérez de Sevilla Müller et al., 2013; Mercer and Thoreson, 2013) Ca channel 

subunits have been reported in the retina. This study extends these earlier findings and reports 

the expression of the α2δ3 subunit by multiple retinal cell types in the mouse and rat retina. The 

α2δ3 subunit is localized to all RGCs, some displaced amacrine and amacrine cells, rod and cone 

bipolar cells, and photoreceptors. We did not observe α2δ3 subunit immunoreactivity in 

horizontal cells. Although horizontal cells are the only group of retinal neurons that do not 

express α2δ3 subunits, they do express other calcium channel subunits, including α1C (L-type Ca 

channel), α1B (N-type Ca channel) and α1A (P/Q-types) subunits (Ueda et al. 1992; Löhrke & 

Hofmann, 1994; Schubert et al. 2006; Witkovsky et al. 2006; Xue et al., 2013) and the α2δ1 

subunit (Huang et al., 2013). These subunits are apparently sufficient for mediating calcium 

channel function in horizontal cells.  

 

α2δ3 subunit expression 

The α2δ3 subunit was initially reported in the brain (Angelotti and Hofmann, 1996; Klugbauer et 

al., 1999; Gao et al., 2000) and α2δ3 subunit mRNA was subsequently reported in mouse retinal 

bipolar cells by in situ hybridization histochemistry (Nakajima et al., 2009). Our findings are 

consistent with Nakajima’s report and extend this observation by showing α2δ3 subunit 

immunoreactivity in RGCs, amacrine cells and photoreceptors.  

 

Possible functional roles of the α2δ3 subunit in retinal cells 

A well-established role for auxiliary Ca channel subunits is the assembly and trafficking of the 

α1 pore-forming subunits to the plasma membrane (Arikkath and Campbell, 2003). α2δ subunits 

also participate in synaptogenesis and cytoskeleton formation (Eroglu et al., 2009; Kurshan et al., 

2009). Furthermore, the α2δ3 subunit participates in presynaptic organization and synaptic 

transmission at the Drosophila neuromuscular junction (Dickman et al., 2008; Kurshan et al., 

2009). In the retina, α2δ3 subunits could therefore have multiple roles including (1) regulating the 

trafficking of the α1 subunit from the soma to the dendritic and axonal endings (Dickman et al., 

2008), (2) increasing exocytosis at the presynaptic terminal when Ca
2+

 influx is decreased 
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(Hoppa et al., 2012) and (3) modifying the biophysical properties of the L-type Ca channels to 

influence the release of glutamate from photoreceptors and bipolar cells (Heidelberger et al., 

2005).  

 

Our study shows that α2δ3 subunit is primarily expressed in retinal cell bodies in the rodent 

retina. Similar immunostaining has been reported for the α2δ1 subunit (Huang et al., 2013) which 

is a neuronal thrombospondin receptor (Eroglu et al., 2009). Thrombospondins have multiple 

functional roles including synaptic adhesion, cell migration, cytoskeletal dynamics and 

angiogenesis (Bornstein et al., 2004; Tan and Lawler, 2009).  However, it is unknown if the α2δ3 

subunit also functions as a receptor for thrombospondin proteins.  

What α1 subunits are associated with the α2δ3 subunit in the retina? Based on the literature there 

are a few candidates. The L-type Ca channel subunits, α1C and α1D are expressed in 

photoreceptors and bipolar cells, which are involved in neurotransmission and synaptic plasticity 

at photoreceptor synapses (Puro et al., 1996; Nachman-Clewner et al., 1999; Xu et al., 2002; 

Mize at al., 2002) and α1C and α1E subunits are expressed by RGCs and amacrine cells (Sargoy 

et al., 2014; Xu et al., 2003), which are co-expressed with the auxiliary subunit α2δ3 in the mouse 

brain (Klugbauer et al., 1999). The α2δ3 subunit may also interact with the α1F L-type Ca 

channel subunit localized to rod photoreceptors and bipolar cells. Cacna1F knockout mouse 

lacks synaptic signaling in the outer retina and shows degeneration of their photoreceptor ribbon 

terminals (Mansergh et al., 2005; Chang et al., 2006).  

 

α2δ3 subunit in retinal diseases 

Mice lacking or having mutations of the α2δ subunits are characterized by multiple physiological 

defects, including neurodegeneration, epilepsy, neuropathic pain, cardiovascular dysfunction, 

and alterations of the biophysical properties of L-type Ca
2+

 currents in cardiomyocytes (Snell, 

1955; Fuller-Bicer et al., 2009; Neely et al., 2010). Therefore, it is not surprising that a mutation 

in the human CACNA2D4 gene, which encodes the α2δ4 subunit, results in an outer retinal 

disease characterized by a reduction of the b-wave, the absence of a photopic ERG, loss of 

ribbon synapses in rod photoreceptor spherules as well as cone dystrophy (Ruether et al., 2000; 

Wycisk et al., 2006a, b). A similar distribution of the α2δ3 subunit and α2δ4 subunit in the OPL of 

the mouse retina (Pérez de Sevilla Müller et al., 2013; this study), suggests the possibility of 
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visual system deficits with a mutation or deletion of the α2δ3 subunit. However, this suggestion is 

highly speculative because the structure and electrophysiological properties of Cacna2d3 null 

mutant retinas have not been evaluated and it is unknown if there are structural or functional 

alterations in the retina. Further investigation of the Cacna2d3 null mouse line (Neely et al., 

2010) is needed for delineating the functional role of the α2δ3 subunit in the retina.  

 

Expression of the α2δ3 subunit is altered in different diseases. For instance, there is a down 

regulation of α2δ2 subunit expression in most non-small cell lung cancer cell lines (Carboni et al., 

2003).  Furthermore, previous studies have shown that Cacna2d3 as a reliable marker for 

malignant childhood neuroblastomas (Thorell et al., 2009; Chu and Best, 2003; Howarth et al., 

2012). There is also an up regulation of α2δ1 expression in rat spinal dorsal horn and dorsal root 

ganglia following peripheral nerve injury (Luo et al., 2001; Newton et al., 2001). In generalized 

progressive retinal atrophy models, where photoreceptor death leads to blindness, current 

experimental findings indicate that Cacna2d3 mRNA levels are unaltered (Lippmann et al., 

2007), which suggests that the α2δ3 subunit is a poor marker for retinal disease.  

 

In conclusion, the α2δ3 subunit could be involved in transmitter release in ganglion, amacrine, 

bipolar cells and photoreceptors, as well as trafficking and stabilization of the corresponding α1 

calcium channel subunit to their presynaptic sites.  
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Figure legends 

Figure 1. Expression of the voltage-gated accessory calcium channel α2δ3 subunit mRNA and 

protein in mouse and rat brain and retina extracts. (A) RT-PCR α2δ3 subunit. (B) Western blots 

using the α2δ3 antibody in the mouse and rat retina and brain homogenates. A protein band of 

~123 kDa was detected in these tissues. Ms=Mouse, R=Retina, B=Brain. 

Figure 2. Localization of α2δ3 accesory calcium channel subunit immunoreactivity in the rodent 

retina. (A) Expression of α2δ3 subunit in the rat retina. α2δ3 immunostaining was in cells in the 

GCL (arrowheads), INL (arrows) and processes in the OPL. (B) No staining was observed in 

retinas incubated with antibodies preadsorbed with the immunization peptide. (C) Expression of 

α2δ3 subunit in the mouse retina. α2δ3 immunostaining was in cells in the GCL (arrowheads) and 

INL (arrows) and with strong immunoreactive puncta in the OPL. (D) No staining was observed 

in mouse section incubated with the blocking peptide as a control for the specificity of the 

antibody. ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: 

inner plexiform layer; GCL: ganglion cell layer. Scale bars: 20 µm. 

Figure 3: α2δ3 immunoreactivity (green) was expressed in RBPMS (magenta)-containing cells in 

the rat (A-C) and mouse (D-F) GCL. RBPMS is a selective marker for RGCs. Arrows indicate 

cells containing α2δ3 immunoreactivity and no RBPMS immunoreactivity, indicating that they 

are displaced amacrine cells. Scale bars: 50 µm. 

 

Figure 4: Localization of GAD67 and α2δ3 subunit immunoreactivities in the rodent retina. (A) 

α2δ3 immunostaining (green) in the rat retina. (B) GAD67 (magenta) immunolabeled IPL, OPL, 

and cell bodies in the proximal INL and GCL. (C) Merge image showing that some (arrowheads) 

but not all GAD67 (arrows) express the α2δ3 subunit in the GCL and INL. (D) α2δ3 

immunostaining (green) in the mouse retina. (E) GAD67 (magenta) and (F) merge image showing 

colocalization of the α2δ3 subunit (arrowheads) with some but not all GAD67 amacrine cells 

(arrows) in the GCL and INL. OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner 

plexiform layer; GCL: ganglion cell layer. Scale bar (A-H): 20 µm. 

Figure 5: Localization of α2δ3 subunit in bipolar cells of the rat retina. (A) α2δ3 immunostaining 

(green) in the rat retina. (B) Immunostaining against glycine (magenta) stained bipolar cells 
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through gap junctions with AII cells and revealed that some ON bipolar cells were 

immunostained by α2δ3 subunit antibodies (A-C, arrowheads) while other ON bipolar cells were 

not (arrows). Some glycinergic amacrine cells were positive for α2δ3 immunostaining (double 

arrowheads). (D) α2δ3 immunostaining (green) in the rat retina. (E) Chx10 (magenta), a pan-

bipolar cell marker. (F) Colocalization of α2δ3 in some bipolar cells in the cell body (arrows). (G) 

α2δ3 immunostaining (green) in the rat retina. The immunostaining with PKCα antibody 

(magenta), a marker for rod bipolar cells (H), revealed co-localization with α2δ3 in rod bipolar 

cells (G-I, arrows). OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform 

layer. Scale bar: 10 µm. 

 

Figure 6: Localization of α2δ3 subunit in bipolar cells of the mouse retina. (A) α2δ3 

immunostaining (green) in the mouse retina. (B) Glycine antibody immunostaining (magenta) 

revealed that some ON bipolar cells were immunostained by α2δ3 subunit antibodies (A-C, 

arrowheads) while other ON bipolar cells were not (arrows). Some glycinergic amacrine cells 

were positive for α2δ3 immunostaining (double arrowheads). (D) α2δ3 immunostaining (green) in 

the mouse retina. (E) Chx10 (magenta), a pan-bipolar cell marker. (F) Colocalization of α2δ3 in 

some bipolar cell bodies (arrows). (G) α2δ3 immunostaining (green) in the mouse retina. The 

immunostaining with PKCα antibody (magenta), a marker for rod bipolar cells (H), revealed co-

localization with α2δ3 in rod bipolar cells (G-I, arrows) but was absent in the distal dendrites 

(arrowheads). OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer. 

Scale bar: 10 µm. 

 

Figure 7. α2δ3 accessory calcium channel subunit is not in bipolar cell tips in the OPL of the 

mouse retina. (A) Double immunostaining of retinal sections with mGluR6 (green) and α2δ3 

(magenta). (B-D) High magnification of single scan showing that mGluR6 immunoreactivity 

does not co-localize with the α2δ3 accessory calcium channel subunit (arrows). (E) Goα-

immunoreactivity (green) and α2δ3-immunoreactivity subunit (magenta). (F-H) High-power 

image (boxed area from E) showing that Goα-immunoreactivity and α2δ3 subunit do not 

colocalized (arrows). Z-step = 0.33 µm. Scale bars (A, B): 20 µm, (B-D, F-H): 5 µm. 

Figure 8. α2δ3 accessory calcium channel subunit is not expressed by horizontal cells in the 

mouse retina. (A) Single scan (boxed area from A) showing horizontal cells with calbindin and 
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α2δ3 subunit staining (magenta). (B-D) High magnification of single scan showing α2δ3 subunit 

and horizontal cell processes. α2δ3 subunit was never found to be colocalized with horizontal 

cells or their processes. (E) Single scan showing horizontal cells tips labeled with a VGAT 

antibody (green) and α2δ3 subunit staining (magenta). (F-H) High magnification (boxed area 

from E) of single scan showing α2δ3 subunit staining. Z-step = 0.33 µm. Scale bar in (A, E): 20 

µm, (B-D, F-H): 5 µm.  

Figure 9. α2δ3 accessory calcium channel subunit in photoreceptors of the mouse retina. (A) 

Labeling of cone pedicles with PNA–FITC and α2δ3 accessory calcium channel subunit. (B-D) 

High magnification of single scan indicating that α2δ3 subunit is not located in the base of cone 

pedicles. (E) Double immunolabeling of α2δ3 accessory calcium channel subunits (magenta) and 

Bassoon (green), a presynaptic protein. (F-H) High magnification (boxed area from E) showing 

colocalization of some α2δ3 subunits (arrowheads). (I) Double immunolabeling of α2δ3 accessory 

calcium channel subunits (magenta) and CtBP2 (green), a ribbon synapse marker. (J-L) High 

magnification (boxed area from I) showing that a few of the α2δ3 subunits are adjacent to CtBP2 

(arrows). Z-step = 0.33 µm. Scale bars (A, E, I): 20 µm; (B-D, F-H, J-L): 5 µm. 

Figure 10. α2δ3 accessory calcium channel subunit in photoreceptors of the mouse retina. (A) 

Double immunolabeling of postsynaptic density protein 95 (PSD-95) (green) and α2δ3 subunit 

(magenta) in the mouse retina. (B-D): High-magnification view (boxed area from A) showing 

that all α2δ3 immunoreactive puncta were distributed inside the photoreceptor terminals. (E) 

Double immunolabeling of VGluT1 (green) for photoreceptor axon terminals and α2δ3 subunit 

(magenta) in the mouse retina. (F-H): High-magnification view (boxed area from E) showing 

that α2δ3 immunoreactive puncta are located inside the photoreceptor terminals. Z-step = 0.33 

µm. Scale bars (A, E): 20 µm; (B-D, F-H): 5 µm. 
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Antibody Antigen/immunogen Species/diluti

on 

Source/catalog 

No./ RRID No. 

α2δ3 Calcium channel, voltage-dependent, α-2/δ 

subunit 3 recombinant protein epitope signature 

tag (PrEST). Immunogen sequence 

SCDDETVNCYLIDNNGFILVSEDYTQ 

TGDFFGEIEGAVMNKLLTMGSFKRITLYDYQAMCRA

NKESSDG 

Rabbit 

polyclonal    

1:100-1:500 

Sigma-Aldrich, 

HPA 030850, 

AB_10600764 

Bassoon Recombinant rat Bassoon Mouse 

monoclonal 

1:500 

Life Science, 

SAP7F407, 

AB_10618753 

Calbindin D-28K Calbindin D-28K Chicken calbindin D-28K, full-

length amino acid (aa) sequence 

Mouse 

monoclonal 

1:1,000 

Sigma-Aldrich, 

C9848, 

AB_2314065 

CHX10 amino acids 44–61 of human CHX10 (sequence 

PPSSHPRAALDGLAPGHL) 

Goat 

polyclonal 

1:100 

Santa Cruz 

Biotechnology, 

sc-21690, 

AB_2216006 

CtBP2 

 

C-terminal binding protein-2 from mouse (361–

445) 

Mouse 

monoclonal, 

1:10000 

BD Bioscience, 

612044, 

AB_399431 

GAD67 Amino acid residues 4–101 of human GAD67 Mouse 

monoclonal 

1:1000 

EMD Millipore, 

MAB5406, 

AB_2278725 

Glycine Glycine paraformaldehyde-conjugated to 

thyroglobulin 

Rat polyclonal 

1:100 

ImmunoSolutio

n,  IG1002, 

AB_10013222 

Goα Purified Goα from bovine brain Mouse 

monoclonal 

1:5000 

EMD Millipore, 

MAB3073, 

AB_94671 

 

Metabotropic 

glutamate 

receptor 6 

(mGluR6) 

AAPPQNENAEDAK, corresponding to the carboxy-

terminus of rat mGluR6 

Guinea pig 

1:500 

Neuromics, 

GP13105, 

AB_2341540 

Peanut 

agglutinin (PNA) 

No immunogen; binds to galactosyl (b-1,3) N-

acetylgalactosamine, fluorescein labeled 

300 μg/ml Vector, FL-1071 

Protein kinase C 

(PKC) 

PKC (79–80 kDa) purified from bovine brain Mouse 

monoclonal 

1:1000 

Biodesign 

International, 

K01107M, 

AB_2313750 

PKC purified bovine PKC, and its epitope mapped to 

its hinge region (amino acids 296–317) 

Mouse 

monoclonal 

1:100 

Santa Cruz 

Biotechnology, 

sc-80, 

AB_628141 

postsynaptic 

density protein 

Recombinant rat PSD-95 Mouse 

monoclonal 

EMD Millipore, 

MAB1596, 
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95 (PSD-95)  1:1000 AB_2092365 

RNA Binding Prot

ein Multiple 

Splice (RBPMS)  

N-terminus of the RBPMS polypeptide (RBPMS4-

24), GGKAEKENTPSEANLQEEEVR 

Guinea pig 

polyclonal 

1:20000 

PhosphoSolutio

ns, 1832-

RBPMS, 

AB_2395389 

vesicular γ-

aminobutyric 

acid transporter 

(VGAT) 

Synthetic peptide AEPPVEGDIHYQR (amino acids 

75–87 in rat) coupled to keyhole limpet 

hemocyanin via an added N- terminal cysteine. 

Mouse 

monoclonal 

1:1,000 

Synaptic 

Systems, 131 

011, 

AB_10890167 

vesicular 

glutamate 

transporter 1 

(VGluT1) 

Amino acid residues 541-560 of rat vGLUT1 Guinea pig 

polyclonal 

1:1000 

EMD Millipore, 

AB5905, 

AB_2301751 
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Figure 1. Expression of the voltage-gated accessory calcium channel α2δ3 subunit mRNA and protein in 
mouse and rat brain and retina extracts. (A) RT-PCR α2δ3 subunit primers in mouse and rat brain and retina 
extracts. (B) Western blots using the α2δ3 antibody in the mouse and rat retina and brain homogenates. A 

protein band of ~123 kDa was detected in these tissues. Ms=Mouse, R=Retina, B=Brain.  
171x82mm (300 x 300 DPI)  
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Figure 2. Localization of α2δ3 accesory calcium channel subunit immunoreactivity in the rodent retina. (A) 
Expression of α2δ3 subunit in the rat retina. α2δ3 immunostaining was in cells in the GCL (arrowheads), INL 

(arrows) and processes in the OPL. (B) No staining was observed in retinas incubated with antibodies 
preadsorbed with the immunization peptide. (C)   Expression of α2δ3 subunit in the mouse retina. α2δ3 
immunostaining was in cells in the GCL (arrowheads) and INL (arrows) and with strong immunoreactive 

puncta in the OPL. (D) No staining was observed in mouse section incubated with the blocking peptide as a 
control for the specificity of the antibody. ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner 

nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale bars: 20 µm.  
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Figure 3: α2δ3 immunoreactivity (green) was expressed in RBPMS (magenta)-containing cells in the rat (A-
C) and mouse (D-F) GCL. RBPMS is a selective marker for RGCs. Arrows indicate cells containing α2δ3 

immunoreactivity and no RBPMS immunoreactivity, indicating that they are displaced amacrine cells. Scale 
bars: 50 µm.  
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Figure 4: Localization of GAD67 and α2δ3 subunit immunoreactivities in the rodent retina. (A) α2δ3 
immunostaining (green) in the rat retina. (B) GAD67 (magenta) immunolabeled IPL, OPL, and cell bodies in 
the proximal INL and GCL. (C) Merge image showing that some (arrowheads) but not all GAD67 (arrows) 
express the α2δ3 subunit in the GCL and INL. (D) α2δ3 immunostaining (green) in the mouse retina. (E) 

GAD67 (magenta) and (F) merge image showing colocalization of the α2δ3 subunit (arrowheads) with some 
but not all GAD67 amacrine cells (arrows) in the GCL and INL. OPL: outer plexiform layer; INL: inner nuclear 

layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale bar (A-H): 20 µm.  
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Figure 5: Localization of α2δ3 subunit in bipolar cells of the rat retina. (A) α2δ3 immunostaining (green) in 
the rat retina. (B) Immunostaining against glycine (magenta) stained bipolar cells through gap junctions 

with AII cells and revealed that some ON bipolar cells were immunostained by α2δ3 subunit antibodies (A-C, 

arrowheads) while other ON bipolar cells were not (arrows). Some glycinergic amacrine cells were positive 
for α2δ3 immunostaining (double arrowheads). (D) α2δ3 immunostaining (green) in the rat retina. (E) 

Chx10 (magenta), a pan-bipolar cell marker. (F) Colocalization of α2δ3 in some bipolar cells in the cell body 
(arrows). (G) α2δ3 immunostaining (green) in the rat retina. The immunostaining with PKCα antibody 

(magenta), a marker for rod bipolar cells (H), revealed co-localization with α2δ3 in rod bipolar cells (G-I, 
arrows). OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer. Scale bar: 10 µm.  
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Figure 6  
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Figure 7. α2δ3 accessory calcium channel subunit is not in bipolar cell tips in the OPL of the mouse retina. 
(A) Double immunostaining of retinal sections with mGluR6 (green) and α2δ3 (magenta). (B-D) High 

magnification of single scan showing that mGluR6 immunoreactivity does not co-localize with the α2δ3 
accessory calcium channel subunit (arrows). (E) Goα-immunoreactivity (green) and α2δ3-immunoreactivity 

subunit (magenta). (F-H) High-power photomicrograph image (boxed area from E) showing that Goα-
immunoreactivity and α2δ3 subunit do not colocalized (arrows). Z-step = 0.33 µm. Scale bars (A, B): 20 µm, 

(B-D, F-H): 5 µm.  
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Figure 8. α2δ3 accessory calcium channel subunit is not expressed by horizontal cells in the mouse retina. 
(A) Single scan (boxed area from A) showing horizontal cells with calbindin   and α2δ3 subunit staining 
(magenta). (B-D) High magnification of single scan showing α2δ3 subunit and horizontal cell processes. 
α2δ3 subunit was never found to be colocalized with horizontal cells or their processes. (E) Single scan 

showing horizontal cells tips labeled with a VGAT antibody (green) and α2δ3 subunit staining (magenta). (F-
H) High magnification (boxed area from E) of single scan showing α2δ3 subunit staining. Z-step = 0.33 µm. 

Scale bar in (A, E): 20 µm, (B-D, F-H): 5 µm.  
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Figure 9. α2δ3 accessory calcium channel subunit in photoreceptors of the mouse retina. (A) Labeling of 
cone pedicles with PNA–FITC and α2δ3 accessory calcium channel subunit. (B-D) High magnification of 

single scan indicating that α2δ3 subunit is not located in the base of cone pedicles. (E) Double 
immunolabeling of α2δ3 accessory calcium channel subunits (magenta) and Bassoon (green), a presynaptic 

protein. (F-H) High magnification (boxed area from E) showing colocalization of some α2δ3 subunits 
(arrowheads). (I) Double immunolabeling of α2δ3 accessory calcium channel subunits (magenta) and CtBP2 
(green), a ribbon synapse marker. (J-L) High magnification (boxed area from I) showing that a few of the 

α2δ3 subunits are adjacent to CtBP2 (arrows). Z-step = 0.33 µm. Scale bars (A, E, I): 20 µm; (B-D, F-H, J-

L): 5 µm.  
171x83mm (300 x 300 DPI)  

 

 

Page 52 of 55

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

Figure 10. α2δ3 accessory calcium channel subunit in photoreceptors of the mouse retina. (A) Double 
immunolabeling of postsynaptic density protein 95 (PSD-95) (green) and α2δ3 subunit (magenta) in the 
mouse retina. (B-D): High-magnification view (boxed area from A) showing that all α2δ3 immunoreactive 
puncta were distributed inside the photoreceptor terminals. (E) Double immunolabeling of VGluT1 (green) 

for photoreceptor axon terminals and α2δ3 subunit (magenta) in the mouse retina. (F-H): High-
magnification view (boxed area from E) showing that α2δ3 immunoreactive puncta are located inside the 

photoreceptor terminals. Z-step = 0.33 µm. Scale bars (A, E): 20 µm; (B-D, F-H): 5 µm.  
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Graphical abstract texct: α2δ3 immunoreactivity (green) was expressed in RBPMS (magenta)-containing 

cells in the mouse GCL. RBPMS is a selective marker for RGCs. Arrows indicate cells containing α2δ3 

immunoreactivity and no RBPMS immunoreactivity, indicating that they are displaced amacrine cells.  

Page 55 of 55

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.




