859 research outputs found
Influence de l'âge, du sexe, de la race sur l'embouche des Zébus nourris avec des sous-produits rizicoles dans le Nord Cameroun
Dans le cadre du projet Elegoua, Nord Cameroun, une étude a été faite pour analyser l'influence de l'âge, du sexe et de la race sur les résultats d'embouche de 1938 zébus. Le sexe et l'âge jouent un rôle essentiel sur les performances obtenues. Les mâles entiers et les animaux compris entre 4 et 7 ans obtiennent les meilleurs résultats. Les tests effectués entre les différentes races et croisements laissent apparaître peu de différences entre races pures. Seule la race Zébu Arabe et ses croisements obtiennent des performances significativement supérieures. L'embouche d'animaux de race M'Bororo d'un âge supérieur à 5 ans donne également de bons résultats. (Résumé d'auteur
Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells
Aims/hypothesis: Mutations in genes encoding HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. Methods: We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. Results: Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. Conclusions/interpretation: The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficienc
Temperature Dependence of Exciton Diffusion in Conjugated Polymers
The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of ~3 nm (~1.5 × 10-4 cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (~3.2 × 10-4 cm2/s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.
Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.
Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers
Accumulation of Self-Reactive Naive and Memory B Cell Reveals Sequential Defects in B Cell Tolerance Checkpoints in Sjogren's Syndrome
This work was funded by grants number 18237 and 20089 from Arthritis Research UK (http://www.arthritisresearchuk.org) to MB and the William Harvey Research Foundation. EC was recipient of short-term travel fellowships from EMBO (ASTF 318-2010) and EFIS-IL
Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes.
Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in nonimmune patients tend to express a restricted subset of VSA (VSA(SM)) that differs from VSA associated with uncomplicated malaria and asymptomatic infection (VSA(UM)). We compared var gene transcription in unselected P. falciparum clone 3D7 expressing VSA(UM) to in vitro-selected sublines expressing VSA(SM) to identify PfEMP1 responsible for the VSA(SM) phenotype. Expression of VSA(SM) was accompanied by up-regulation of Group A var genes. The most prominently up-regulated Group A gene (PFD1235w/MAL7P1.1) was translated into a protein expressed on the infected RBC surface. The proteins encoded by Group A var genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria
Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.
Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool
<i>Plasmodium falciparum </i>var genes expressed in children with severe malaria encode CIDRα1 domains
Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR‐binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full‐length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support the hypothesis that the CIDRα1‐EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction
Standardisation of labial salivary gland histopathology in clinical trials in primary Sjögren's syndrome
Labial salivary gland (LSG) biopsy is used in the classification of primary Sjögren's syndrome (PSS) and in patient stratification in clinical trials. It may also function as a biomarker. The acquisition of tissue and histological interpretation is variable and needs to be standardised for use in clinical trials. A modified European League Against Rheumatism consensus guideline development strategy was used. The steering committee of the ad hoc working group identified key outstanding points of variability in LSG acquisition and analysis. A 2-day workshop was held to develop consensus where possible and identify points where further discussion/data was needed. These points were reviewed by a subgroup of experts on PSS histopathology and then circulated via an online survey to 50 stakeholder experts consisting of rheumatologists, histopathologists and oral medicine specialists, to assess level of agreement (0–10 scale) and comments. Criteria for agreement were a mean score ≥6/10 and 75% of respondents scoring ≥6/10. Thirty-nine (78%) experts responded and 16 points met criteria for agreement. These points are focused on tissue requirements, identification of the characteristic focal lymphocytic sialadenitis, calculation of the focus score, identification of germinal centres, assessment of the area of leucocyte infiltration, reporting standards and use of prestudy samples for clinical trials. We provide standardised consensus guidance for the use of labial salivary gland histopathology in the classification of PSS and in clinical trials and identify areas where further research is required to achieve evidence-based consensus
DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens
- …
