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Abstract Aims/hypothesis: Mutations in genes encoding
HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, re-
spectively, MODY subtypes-1, -3 and -4. Impaired glucose-
stimulated insulin secretion is the common primary defect of
these monogenic forms of diabetes. A regulatory circuit
between these three transcription factors has also been sug-
gested. We aimed to explore how Pdx-1 regulates beta cell
function and gene expression patterns. Methods: We studied
two previously established INS-1 stable cell lines permitting
inducible expression of, respectively, Pdx-1 and its dominant-
negative mutant. We used HPLC for insulin processing,
adenovirally encoded aequorin for cytosolic [Ca2+], and tran-
sient transfection of human growth hormone or patch-clamp
capacitance recordings to monitor exocytosis. Results: In-
duction of DN-Pdx-1 resulted in defective glucose-stimulated
and K+-depolarisation-induced insulin secretion in INS-1
cells, while overexpression of Pdx-1 had no effect. We found
that DN-Pdx-1 caused down-regulation of fibroblast growth
factor receptor 1 (FGFR1), and consequently prohormone
convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely
impaired proinsulin processing. In addition, induction of
Pdx-1 suppressed the expression of glucagon-like peptide 1
receptor (GLP-1R), which resulted in marked reduction of
both basal and GLP-1 agonist exendin-4-stimulated cellular
cAMP levels. Induction of DN-Pdx-1 did not affect glu-
cokinase activity, glycolysis, mitochondrial metabolism or

ATP generation. The K+-induced cytosolic [Ca2+] rise and
Ca2+-evoked exocytosis (membrane capacitance) were not
abrogated. Conclusions/interpretation: The severely im-
paired proinsulin processing combined with decreased
GLP-1R expression and cellular cAMP content, rather than
metabolic defects or altered exocytosis, may contribute to the
beta cell dysfunction induced by Pdx-1 deficiency.

Keywords Beta cell . cAMP . FGFR1 . GLP-1 receptor .
IPF-1 . MODY4 . Pdx-1 . Prohormone convertase-1

Abbreviations EMSA: electrophoretic mobility-shift
assay . FGFR1: fibroblast growth factor receptor 1 .
GLP-1R: glucagon-like peptide 1 receptor .
PC: prohormone convertase

Introduction

MODYis amonogenic form of type 2 diabetes characterised
by early age of onset and autosomal dominant transmission.
It is not usually associated with insulin resistance. With the
exception of MODY-2 (glucokinase), MODY (-1, -3, -4, -5
and -6) has been linked to mutations in genes coding for the
transcription factors, respectively, HNF-4α, HNF-1α, IPF-
1/PDX-1/IDX-1, HNF-1β and NeuroD/BETA-2. Although
mutations in these transcription factors display heteroge-
neous clinical phenotypes, the primary cause of the various
MODY subtypes has been attributed to beta cell dysfunc-
tion. Only oneMODY-4 family has been described in which
a homozygous mutation carrier had pancreatic agenesis
while heterozygous subjects developed early-onset diabetes
[1, 2]. Themutation in this family (IPF-1-P63fsdelC) directs
expression of a dominant-negative protein [3]. Diabetic
MODY-4 family members heterozygous for the mutation
exhibit severe impairment of insulin secretion and enhanced
insulin sensitivity, indicating that the primary defect is beta
cell dysfunction [4]. Missense mutations in the IPF-1 gene
have also been demonstrated to predispose to late-onset type
2 diabetes [5, 6].
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In the mouse, Pdx-1 has been reported to regulate early
pancreatic development and to control the expression of
insulin as well as other beta-cell-specific genes [7–10]. Tar-
geted disruption of the PDX-1 gene results in pancreatic
aplasia, while heterozygous mice exhibit impaired glucose
tolerance [8, 9, 11, 12]. Beta-cell-specific inactivation of the
PDX-1 gene causes diabetes with increasing age, whereas
mice with one deleted PDX-1 allele only develop glucose
intolerance [13]. Inducible suppression of Pdx-1 function in
mouse beta cells using an antisense ribozyme specific for
Pdx-1mRNAunder control of the reverse tetracycline trans-
activator also evokes age-dependent diabetes [14].

Pdx-1 plays an essential role in the regulation of beta cell
neogenesis, differentiation and perhaps apoptosis [15–18].
Accordingly, transgenic overexpression of PDX-1 restores
beta cell mass and function, thereby preventing the onset of
diabetes in IRS2-null mice [16]. Adenovirus-mediated Pdx-
1 overexpression in the pancreas of the mouse favours beta
cell neogenesis, whereas ectopic expression of Pdx-1 in
mouse liver or human fetal liver progenitor cells promotes
differentiation into insulin-producing cells [18–20].

Glucose intolerance due to defective glucose-stimulated
insulin secretion has been reported in the heterozygous
PDX-1-mutant mouse [12]. Both reduced Glut-2 expression
and decreased glucose-evoked NAD(P)H generation in
islets are also observed, suggesting impaired glucosemetab-
olism [12]. However, the Pdx-1 target genes responsible for
this secretory defect are yet to be identified.

Using INS-1 stable cell lines capable of expressingHNF-1α
and HNF-4α or their dominant-negative mutants DN-HNF-
1α and DN-HNF-4α in a doxycycline-dependent manner,
we identified several target genes of HNF-1α and HNF-4α
and suggested that the metabolism–secretion coupling in beta
cells is affected in MODY-1 and MODY-3 [21–23]. It has
been proposed that HNF-1α mediates transcription of the
PDX-1 gene [24, 25]. Furthermore, a MODY-1 family was
reported in which the Pdx-1 binding site in the HNF-4α P2
promoter is mutated, suggesting a regulatory circuit between
Pdx-1, HNF-4α and HNF-1α [26]. In a previous study on
INS-1 cell lines permitting inducible overexpression or sup-
pression of Pdx-1 we reported that this transcription factor is
necessary for the beta-cell-like phenotype by inhibiting ex-
pression of glucagon, the hormone secreted by the alpha cells
[27]. To substantiate phenotype determination and to elu-
cidate the mechanisms underlying the impaired insulin se-
cretion caused by Pdx-1 deficiency, we examined insulin
secretion, glucose metabolism, intracellular ATP and cAMP
levels, beta cell gene expression profiles, cytosolic [Ca2+] and
membrane capacitance in our established cellular models,
which allow inducible expression of Pdx-1 or its dominant-
negative mutant DN-Pdx-1 [27].

Materials and methods

Cell culture INS-1 stable cell lines, Pdx-1#6 and DN-Pdx-
1#28, allowing inducible expression of, respectively, wild-
type Pdx-1 and DN-Pdx-1 (lacking the N-terminal 79 amino
acids), were cultured as previously described [27].

Immunoblotting and immunofluorescence Cells were cul-
tured with or without 500 ng/ml doxycycline for 24 h.
Nuclear proteins were extracted as previously described
[28]. For total cellular protein extraction, cells were son-
icated in lysis buffer containing (mmol/l): 20 Tris–HCl,
pH 7.4, 2 EDTA, 2 EGTA, 1 PMSF and 1% Triton X-100.
Nuclear extracts and total cellular proteins were fraction-
ated by 7–11%SDS-PAGE. Immunoblottingwas performed
as described previously using enhanced chemiluminescence
(Pierce, Rockford, IL, USA) for detection [21]. The dilu-
tions for antibodies against Pdx-1 (a kind gift from Dr. H.
Edlund), glucokinase (Santa Cruz, Basel, Switzerland),
syntaxin A (Sigma, Buchs, Switzerland) and PC1/3 (a gen-
erous gift from Dr D. F. Steiner) were 1:6,000, 1:2,000,
1:2,000, 1:1,000, 1:5,000 and 1:2,000, respectively.

For immunofluorescence, cells grown on polyornithine-
coated glass coverslips were treated for 24 h with or without
500 ng/ml doxycycline. Cells were then washed, fixed in
4% paraformaldehyde, and permeabilised with 0.1% Triton
X-100 in phosphate-buffered saline containing 1% BSA
(PBS–BSA). The preparation was then blocked with PBS–
BSA before incubating with the first antibody, anti-Pdx1
(1:1,000 dilution), followed by the second antibody labelling.

Nuclear extract preparation and electrophoretic mobility-
shift assay Nuclear extracts from Pdx-1#6 and DN-Pdx-
1#28 cells grown in culturemediumwith orwithout 500 ng/ml
doxycycline for 24 h were prepared according to Schreiber
et al. [28]. The double-stranded oligonucleotides corre-
sponding to the rat insulin I FLAT element [29], 5′gatcttg
ttaataatctaattacc3′, was used as a probe. Electrophoretic
mobility-shift assay (EMSA) procedures including condi-
tions for probe labelling and binding reactions were per-
formed as in Wang et al. [30].

Measurements of insulin secretion and cellular insulin
content Cells in 12-well plates were cultured in 11.2 mmol/l
glucose medium with or without 500 ng/ml doxycycline for
4 days, followed by an additional 5 h equilibration in
2.5 mmol/l glucose medium. Insulin secretion was mea-
sured over a period of 30 min in Krebs–Ringer–Bicarbon-
ate–HEPES buffer (KRBH) (mmol/l: 140 NaCl, 3.6 KCl,
0.5 NaH2PO4, 0.5 MgSO4, 1.5 CaCl2, 2 NaHCO3, 10
HEPES and 0.1% BSA) containing indicated stimuli. In-
sulin content was determined after extraction with acid
ethanol following the procedures ofWang et al. [30]. Insulin
was determined by radioimmunoassay using rat insulin as a
standard [30] and a commercial antibody, not distinguishing
between proinsulin and insulin (Linco, St. Charles, MO,
USA).

Assay of glucokinase activity Cytosolic proteins were
extracted, according to Wang and Iynedian [31], from cells
cultured in 11.2 mmol/l glucose medium in the presence or
absence of 500 ng/ml doxycycline for 4 days. Total hexo-
kinase activity was measured at 30°C by a glucose-6-phos-
phate dehydrogenase-coupled assay in a spectrophotometer
(Lambda Bio20, Perkin Elmer, Switzerland), monitoring
NADH production [31]. Glucokinase activity was calculated
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as the differences in NADH produced at 100 and 0.5 mmol/l
glucose and expressed in nmol/min (=mU) per mg of protein.

Measurement of glucose utilisation Cells in 24-well dishes
were cultured in standard medium (11.2 mmol/l glucose)
with or without 500 ng/ml doxycycline for 72 h. The culture
was continued in 2.5 mmol/l glucose medium with or
without 500 ng/ml doxycycline for a further 24 h. The rate of
glycolysis was estimated from the production of [3H] water
from D-[5-3H]glucose according to Wang and Iynedjian
[31].

[14C]Pyruvate oxidation DN-Pdx-1#28 cells in 24-well
plates were cultured in standard medium (11.2 mmol/l
glucose) with or without 500 ng/ml doxycycline for 4 days.
The production of 14CO2 from [2-14C] pyruvate was mea-
sured over 1 h inKRBHcontaining either 0.05 or 1.0mmol/l
pyruvate as reported previously [32].

Measurement of intracellular ATP and cAMP Cells in six-
well dishes were cultured with (+Dox) or without (−Dox)
500 ng/ml doxycycline in standard medium (11.2 mmol/l
glucose) for 3 days and then equilibrated in 2.5 mmol/l
glucose medium for a further 24 h. Cellular ATP was
measured after 8 min of stimulation with 20 mmol/l glu-
cose as previously described [21]. Cellular cAMP was mea-
sured after 30 min of stimulation with or without 10 nmol/l
Exendin-4 in KRBH containing 2.5 or 20 mmol/l glucose
according to the manufacturer’s protocol (cAMP Biotrak
enzyme-immunoassay system; Amersham Biosciences,
Freiburg, Germany).

Total RNA isolation and Northern blotting Pdx-1#6 cells in
10-cm diameter dishes were cultured in standard medium
(11.2 mmol/l glucose) with or without the indicated con-
centration of doxycycline for 96 h, unless otherwise specified.
DN-Pdx-1#28 cells in 10-cm diameter dishes were
cultured in standard medium (11.2 mmol/l glucose) with
or without 500 ng/ml doxycycline for 72 h. The culture
was continued in 2.5 mmol/l glucose medium with or
without 500 ng/ml doxycycline for 16 h, followed by an
additional 8 h in culture medium with 2.5, 6, 12 or 24 mmol/l
glucose. Total RNA was extracted and blotted on nylon
membranes as described previously [31]. The membrane was
prehybridised and then hybridised to 32P-labelled random
primer cDNA probes according to Wang and Iynedijian [31].
To ensure equal RNA loading and even transfer, all mem-
branes were stripped and rehybridised with a ‘housekeeping
gene’ probe cyclophilin. cDNA fragments used as probes for
glucokinase, Glut-2, L-pyruvate kinase, Rab3A, VAMP-2,
SNAP25A, Synaptotagmin-1 and Pdx-1 mRNA detection
were digested from corresponding plasmids. cDNA probes
for rat aldolase B, glyceraldehyde-3 phosphate dehydroge-
nase (GAPDH), adenine nucleotide translocator-1 and 2
(ANT-1, ANT-2),mitochondrial uncoupling protein-2 (UCP-
2), clathrin heavy chain, clathrin light chain, cyclin-depen-
dent kinase-4 (CDK4), insulin receptor substrate-2 (IRS2),
connexin-36, E-cadherin, N-cadherin, neural cell adhesion
molecule (N-CAM), suppressor of cytokine signalling-3

(SOCS-3), signal transducer and activator of transcription
(STAT)-1, -3, -5, Cav1.3 (α1D), prohormone convertases
(PC-1/3 and -2), adiponectin receptor (AdipoR), short-chain
3-hydroxyacyl-CoA dehydrogenase (SCHAD), fibroblast
growth factor receptor 1 (FGFR1), and glucagon-like
peptide-1 receptor (GLP-1R) were prepared by RT-PCR
and confirmed by sequencing.

Measurement of cytosolic [Ca2+] in DN-Pdx1#28 cells
Recombinant adenovirus encoding cytosolic aequorin under
the chicken actin promoter (rAdCAGcAQ) was used [33].
DN-Pdx-1#28 cells were grown on polyornithine-coated
plastic coverslips for 3 days in the absence or presence of
doxycycline (500 ng/ml) and infectedwith rAdCAGcAQ for
90 min at approximately 50 PFU/ml. The [Ca2+]c was
measured 20 h later as previously described [33]. Briefly,
cells were pre-incubated with 2.5 μmol/l coelenterezine
(Calbiochem, San Diego, CA, USA) for 2–3 h and then
perfused with KRBH containing 2.5 mmol/l glucose and
30 mmol/l KCl as stimulator. Emitted photons were col-
lectedwith a photomultiplier apparatus (Thorn-EmiElectron
tubes, UK).

Electrophysiological measurements Cells were seeded on
glass coverslips and cultured without (−Dox) or with
(+Dox) 500 ng/ml doxycycline for 4 days. The extracel-
lular solution contained (mmol/l): 140 NaCl, 3.6 KCl, 2
NaHCO3, 2.6 CaCl2, 0.5 NaH2PO4, 0.5 MgSO4, 5 HEPES
and 2.5 glucose. The pH was set to 7.40 using NaOH.
For membrane capacitance recordings, the pipette solu-
tions contained (mmol/l): 125 potassium glutamate, 10
KCl, 10 NaCl, 1 MgCl2, 5 HEPES, 3 Mg-ATP, 10 EGTA
and 0 or 9.57 CaCl2. Using the Ca2+ chelator program
WEBMAXC (http://www.stanford.edu/~cpatton/webmaxc/
webmaxcS.htm) the free Ca2+ concentrations were esti-
mated to be lower than 0.1 nmol/l and 5 μmol/l, re-
spectively. The pH was set to 7.15 using KOH. For patch
clamp capacitance recordings a glass coverslip was trans-
ferred to a temperature-controlled perfusion chamber. The
chamber was perfused, using a gravity-driven perfusion
system, with extracellular solution at a rate of 1.3 ml/min.
Bath temperaturewasmaintained at 32–33°C. Patch pipettes
were pulled from borosilicate glass capillaries (GC150F-10;
Clark Instruments, Reading, UK) on a Model P-97 puller
from Sutter Instruments (Novato, CA, USA). Pipette re-
sistance was between 4 and 6 MΩ. Patch-clamp recordings
wereperformedwith aListEPC9amplifier (HEKA,Darmstadt,
Germany) in voltage-clamp mode. Capacitance was mea-
sured after applying a 1-kHz, 28-mV peak-to-peak sinusoid
stimulus from a dc holding potential of −70 mV. The ‘sine +
dc’ mode of the software lock-in extension of the PULSE
software was used to calculate the equivalent circuit param-
eters Cm (membrane capacitance), membrane conductance
(Gm) and access resistance (Ra) from the current recordings.

Measurement of human growth hormone release DN-Pdx-
1#28 cells in 24-well plates were transiently transfected
with 2 μg/plate of pcDNA3-hGH encoding human growth
hormone using Effectene (Qiagen, Basel, Switzerland)
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according to manufacturer’s protocol [34]. After 16 h of
transfection, cells were cultured with or without 500 ng/ml
doxycycline for 4 days in standard medium (11.2 mmol/l
glucose) and continued for a further 5 h in 2.5 mmol/l
glucose medium. Human growth hormone secretion stim-
ulated by 24 mmol/l glucose, 100 μmol/l tolbutamide and
20 mmol/l KCl was measured over a period of 30 min in
KRBHcontaining 2.5mmol/l glucose (basal). Human growth
hormone was quantified by ELISA (Roche, Rotkreuz,
Switzerland).

Measurement of proinsulin conversion DN-Pdx-1#28 cells
in 3.5-cm diameter dishes were cultured in standard me-
dium (11.2 mmol/l glucose) with or without 500 ng/ml
doxycycline for 4 days. The cells were then washed and
radiolabelled (2–4 mBq [3H]leucine) for 10 min at 37°C in
KRBH, 16.7 mmol/l glucose. After washing in KRBH,
1.7 mmol/l glucose with 1 mmol/l unlabelled leucine, the
pulse-labelled cells were incubated at 37°C for 60 or
120 min (chase) in this same buffer. At the end of the chase
incubation, cells were extracted and analysed by reversed-
phase HPLC as described in detail previously [35].

Statistics Results are expressed as means±SEM and sta-
tistical analyses were performed by Student’s t-test for un-
paired data.

Results

Pdx-1 and DN-Pdx-1 were expressed in a doxycycline-
dependent manner We previously established Pdx-1#6 and
DN-Pdx-1#28 cells using the parental INS-rβ (r9) cells
[27]. Western blotting with an antibody against the C
terminus of Pdx-1 demonstrated that both Pdx-1 and DN-
Pdx-1 proteins were induced, respectively, in Pdx-1#6 and
DN-Pdx-1#28 cells treated with 500 ng/ml doxycycline for
24 h (Fig. 1a). EMSA with the rat insulin I promoter
element showed that Pdx-1 protein binding was increased
by 10-fold and diminished by 90%, respectively, in Pdx-
1#6 and DN-Pdx-1#28 cells under the same conditions
(Fig. 1b). The Pdx-1 and DN-Pdx-1 binding complexes
were supershifted by anti-Pdx-1 antibody (data not shown).
It is noteworthy that DN-Pdx-1 protein was undetectable
under non-induced conditions (Fig. 1a and b). Immuno-
fluorescence staining of DN-Pdx-1#28 cells with the same
antibody illustrated that all cells uniformly expressed the
nuclear localised DN-Pdx-1 protein (Fig. 1c). Similar re-
sults were obtained in Pdx-1#6 cells (data not shown).

Dominant-negative suppression of Pdx-1 impaired insulin
secretion As demonstrated in Fig. 2a, overexpression of
Pdx-1 in INS-1 cells did not alter glucose-stimulated insulin
secretion. In contrast, similar induction of DN-Pdx-1 blunted
glucose-, leucine-, and K+-evoked insulin release (Fig. 2b).
After 4 days of treatment with 500 ng/ml doxycycline,
insulin content was increased by 37% (−Dox: 1.497±0.199;
+Dox: 2.033±0.281 μg/mg protein) in Pdx-1#6 cells and
decreased by 57% (−Dox: 1.957±0.303; +Dox: 0.857±

0.22 μg/mg protein) in DN-Pdx-1#28 cells. Therefore, in-
sulin secretion in these cells was expressed as percentage of
cellular insulin content.

Induction of DN-Pdx1 down-regulated the expression of
fibroblast growth factor receptor 1 (FGFR1) and prohor-
mone-convertase (PC)-1/3 and -2 Since Pdx-1 has been
proposed to regulate PC-1/3 expression through FGFR1
signalling [36], we examined the mRNA levels of FGFR1
and PC-1/3 in Pdx-1#6 and DN-Pdx-1#28 cells cultured
with or without 500 ng/ml doxycycline for 4 days. As
demonstrated by quantitative Northern blotting in Fig. 3,
induction of DN-Pdx-1 for 4 days suppressed the mRNA
levels of FGFR1 by 50%. Graded overexpression of Pdx-1
for 4 days resulted in a modest increase in the mRNA
levels of PC1/3 and PC2 (Fig. 3a). In contrast, 4 days of
induction of DN-Pdx1 suppressed the expression of PC1/3
and PC2 by 90 and 40%, respectively (Fig. 3b). The
protein levels of PC-1/3 were also reduced by 80%,
whereas the expression of glucokinase protein was unaltered

Pdx1
DN

Dox + +     500 ng/ml

Pdx
1

# 6

DNPdx
1

# 28a

WT

66 Mr

45 Mr

29 Mr

b

Dox + –––– +  500 ng/ml

Pdx
1

# 6
DNPdx

1
# 28

Pdx1DN
WT

c
+Dox–Dox

Fig. 1 Nuclear localised proteins encoded by Pdx-1 and DN-Pdx-1
were induced in a doxycycline-dependent manner. Cells were
cultured with or without 500 ng/ml doxycycline for 24 h. a Im-
munoblotting of nuclear extracts from Pdx-1#6 and DN-Pdx-1#28
cells with antibody against Pdx-1 C terminus. b Gel-shift assay of
nuclear extracts from Pdx1#6 and DN-Pdx-1#28 cells using the rat
insulin I promoter fragment. c Immunofluorescence staining of DN-
Pdx-1#28 cells with antibody against Pdx-1 C terminus
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(Fig. 3c). Both PC1/3 and PC2, which are expressed in
pancreatic beta cells and INS-1 cells, are implicated in the
processing of proinsulin to insulin [37–39]. PC1/3 cleaves
preferentially at the B-chain/C-peptide junction and thereby
facilitates the second maturation cleavage by PC2 at the
C-peptide/A-chain junction [35, 37–40].

Induction of DN-Pdx-1 impaired proinsulin conversion in
INS-1 cells To examine the consequences of reduced
expression of PC1/3 on proinsulin processing, we analysed
the pattern of radiolabelled proinsulin-related products dur-
ing a pulse-chase protocol [35]. As depicted in Fig. 4a,
dominant-negative suppression of Pdx-1 led to severely de-
fective proinsulin processing. Thus at 120 min, proinsulin
conversion was inhibited by more than 60%.

Induction of DN-Pdx-1 inhibited release of human growth
hormone co-secreted with insulin To investigate hormone
independently of regulation of insulin gene expression and
processing, we transfected DN-Pdx-1#28 cells with a cDNA
encoding human growth hormone. This polypeptide hor-
mone is stored and co-secreted with insulin but is not
processed by prohormone-convertase 1/3 (PC1/3) [34, 39,
41]. As illustrated in Fig. 4b, induction of DN-Pdx-1 caused
significant decrease in human growth hormone secretion
stimulated by glucose, tolbutamide and K+. Tolbutamide
blocks ATP-dependent K+-( KATP) channels, whereas K+

directly depolarises the plasma membrane potential.

Induction of DN-Pdx1 reduced the expression of GLP-1R,
intracellular cAMP levels and GLP-1R signalling DN-
Pdx-1*28 cells were cultured with or without 500 ng/ml
doxycycline for 3 days in standard glucose medium. The
culture was continued for a further 24 h in 2.5 mmol/l
glucosemedium.Overexpression of Pdx-1 hadminor effects
on GLP-1R expression, whereas induction of DN-Pdx-1 for
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Fig. 2 Dominant-negative suppression of Pdx-1-function-impaired
insulin secretion. Cells were cultured with (+Dox, closed bar) or
without (−Dox, open bar) 500 ng/ml doxycycline in standard
medium (11.2 mmol/l glucose) for 4 days and then equilibrated in
2.5 mmol/l glucose medium for a further 5 h. a Induction of Pdx1
for 4 days did not alter glucose-stimulated insulin secretion. Insulin
release from Pdx-1#6 cells in KRBH buffer containing indicated
concentrations of glucose was determined by radioimmunoassay and
expressed as percentage of cellular insulin content. Cellular insulin
content was increased by 36.7±4.3% (−Dox: 1.497±0.199; +Dox:

2.033±0.281 μg/mg protein, n=6, p<0.005) after Pdx-1 induction.
b Similar induction of DN-Pdx1 resulted in defective insulin release
induced by (mmol/l): 24 glucose, 20 leucine and 20 KCl. Insulin
secretion from DN-Pdx-1#28 cells stimulated by (mmol/l): 24 glu-
cose, 20 leucine and 20 KCl was measured in KRBH containing
2.5 mmol/l glucose (basal). Cellular insulin content was reduced by
56.9±5.2% (−Dox: 1.957±0.303; +Dox: 0.857±0.22 μg/mg protein,
n=6, p<0.001). Data represent means±SEM of six independent
experiments. ***p<0.001

Cyclophilin
WT
DN

PC1/3
PC2

0 75 15
0

50
0 0 75 15
0

50
0 0 50
0 0 50
0 0 50
0 0 50
0

ng/ml

a Pdx1#6 b DN-Pdx1#28
11.2Glucose (mmol/l)241262.5

Doxycycline

Pdx1

FGFR1

Doxycycline +– +– +–+– 500 ng/ml

97.4 Mr

66 

45 

97.4 Mr
66 

45 

PC1/3

Glucokinase

c

Fig. 3 Pdx-1 regulated the expression of FGFR1 and PC-1/3. a dx-1#6
cells were cultured in standard medium (11.2 mmol/l glucose) with or
without indicated concentration of doxycycline for 4 days. b DN-Pdx-
1#28 cells were cultured in standard medium (11.2 mmol/l glucose)
with or without 500 ng/ml doxycycline for 72 h. The culture was
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4 days suppressed the mRNA levels of GLP-1R by 90%
(Fig. 5).

We therefore measured the intracellular cAMP levels and
GLP-1 agonist-stimulated insulin secretion under the same
conditions. DN-Pdx-1 reduced the intracellular cAMP
content by 40% at basal (2.5 mmol/l) glucose conditions
(Fig. 6a). In non-induced cells, the GLP-1R agonist exendin-
4 raised the cAMP concentrations by 2-fold at both 2.5 and
20 mmol/l glucose (Fig. 6a). In contrast, the exendin-4-
induced cAMP increase was completely inhibited in INS-1

cells expressing DN-Pdx-1 (Fig. 6a). Consequently, ex-
endin-4-induced insulin secretionwas also blocked by induc-
tion of DN-Pdx-1 (Fig. 6b). Forskolin stimulates adenylate
cyclase and IBMX inhibits phosphodiesterases, leading to
robust increases in cellular cAMP levels (Fig. 6c). The
insulin secretion induced by these agents was unaffected by
DN-Pdx-1 (Fig. 6d). The marked increase in cellular cAMP
levels induced by forskolin plus IBMX were, however,
slightly reduced by DN-Pdx-1 (Fig. 6c) (p<0.05).

To examine the possibility that suppression of Pdx-1
function impairs metabolism-secretion coupling [12], we
measured glucose metabolism in DN-Pdx-1#28 cells.

Induction of DN-Pdx-1 did not affect glycolysis, mitochon-
drial oxidation or ATP generation Pdx-1 was previously
reported to regulate glucokinase gene expression [42].
However, we found that glucokinase activity was un-
altered in Pdx-1#6 (−Dox: 10.06±2.07; +Dox: 11.70±
1.48 mU mg protein−1 h−1; n=7) and DN-Pdx-1#28 (−Dox:
10.80±1.33; +Dox: 12.41±1.33 mU mg protein−1 h−1; n=7)
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0 50
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Glucose             11.2               2.5   6   12  24 (mmol/l)
a Pdx1#6 b DN-Pdx1#28
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Fig. 5 Induction of DN-Pdx-1 suppressed the expression of GLP-1R.
aPdx-1#6 cellswere cultured in standardmedium (11.2mmol/l glucose)
with or without indicated concentration of doxycycline for 4 days.
bDN-Pdx-1#28 cells in 10-cmdiameter disheswere cultured in standard
medium with or without 500 ng/ml doxycycline for 72 h. The culture
was continued in 2.5mmol/l glucosemediumwith or without 500 ng/ml
doxycycline for 16 h, followed by an additional 8 h in culture medium
with 2.5, 6, 12 and 24 mmol/l glucose. The gene expression profile in
these cells was quantified by northern blotting. Total RNA samples
(20μg) were analysed by hybridising with indicated cDNA probes. The
experiments were repeated two to three times with similar results
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**p<0.005, ***p<0.001
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cells after treatment with 500 ng/ml doxycycline for 4 days.
Under the same conditions, neither glucose utilisation
(Fig. 7) nor mitochondrial oxidation (Fig. 7b) was altered in
DN-Pdx-1#28 cells. In good agreement, cellular ATP con-
tent was unchanged by induction of DN-Pdx-1 (Fig. 7c).
These results suggest that the target genes of Pdx-1 are
distinct from those of HNF-1α and HNF-4α, the latter
controlling mitochondrial function [21–23]. To substantiate
this, we analysed the gene expression patterns in Pdx-1#6
and DN-Pdx-1#28 cells under non-induced and induced
conditions.

Pdx-1 did not regulate the expression of glucokinase and
other genes involved in glucose metabolism As shown in
Fig. 8a, up-regulation of Pdx1 for 4 days did not alter the
mRNA levels of glucokinase, L-pyruvate kinase (L-PK),
aldolase B, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), uncoupling protein 2 (UCP2), or adenine nu-
cleotide translocator 1 and 2 (ANT1 and ANT2). Similarly,
dominant-negative suppression of Pdx-1 for 4 days had no
effects on these transcripts (Fig. 8b). However, there was a
90% decrease in Glut2 expression. As the capacity of this
sugar transporter is in large excess of the activity of
glucokinase and other glycolytic enzymes, even this de-
crease would not have been expected to affect glucose

metabolism. Therefore in the present cellular model, Pdx-1
does not control glycolysis and mitochondrial metabolism.
Consequently, we investigated further the effects of Pdx-1
on the expression of genes implicated in insulin processing
and secretion, as well as granule maturation and exocytosis.

Effects of DN-Pdx-1 on cytosolic [Ca2+] and exocytosis
As shown in Fig. 9a and b, K+ elicited a pronounced
increase in cytosolic [Ca2+]. This response was not atten-
uated but actually increased by 15% following induction
of DN-Pdx-1. This suggests that DN-Pdx-1-induced im-
pairment of insulin secretion is not caused by reduced
cytosolic [Ca2+].

In order to investigate whether Pdx-1 controls genes
implicated in the exocytotic machinery we measured mem-
brane capacitance to study the exocytotic response to
infusion of Ca2+ (5 μmol/l) through the patch pipette. Mea-
surement of capacitance began a few seconds after establish-
ment of the whole cell configuration. Typical traces are
shown in Fig. 9c. It is seen that capacitance increases in a
continuous manner following patch rupture. No change in
capacitance was obtained in the absence of Ca2+ in the
pipette solution (not shown). In order to compare the
exocytotic response to the Ca2+ infused through the patch
pipette we measured the average increase in capacitance
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Fig. 6 DN-Pdx-1 decreased intracellular cAMP levels and GLP-1R
signalling. DN-Pdx-1#28 cells in 24-well plates were cultured with
(+Dox, closed bar) or without (open bar) 500 ng/ml doxycycline for
3 days in standard glucose medium. The culture was continued for a
further 24 h in 2.5 mmol/l glucose medium. a Cellular cAMP con-
tent was measured by stimulation with or without 10 nmol/l exen-
din-4 for 30 min in KRBH buffer containing 2.5 (basal) or 20 mmol/
l glucose. Data represent five independent experiments. DN-Pdx-1
reduced both basal and exendin-4-stimulated cAMP concentrations.
b Insulin secretion was measured under the same conditions. DN-Pdx-1
inhibited both exendin-4- and glucose-induced insulin secretion. Data

represent six independent experiments. c Cellular cAMP content
was measured by stimulation with or without 10 nmol/l exendin-4 or
200 nmol/l forskolin plus 100 μmol/l IBMX for 30 min in KRBH
buffer containing 2.5 mmol/l glucose. Data represent five separate
experiments performed in duplicate. dDN-Pdx-1 did not affect forskolin
plus IBMX-induced insulin release. Insulin secretion was measured
by stimulation with or without 200 nmol/l forskolin plus 100 μmol
IBMX for 30 min in KRBH containing 2.5 (basal) or 20 mmol/l
glucose. Data represent six separate experiments. *p<0.05, **p<0.005,
***p<0.001
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between 60 and 120 s after patch rupture. As shown in
Fig. 9d, there was no difference between cells cultured in the
presence or absence of doxycycline. Likewise, the initial
capacitance (6.33±0.32 and 6.39±0.32, respectively) was
unaffected by doxycycline treatment. In conclusion, Ca2+-
induced exocytosis does not seem to be affected by dom-
inant-negative suppression of Pdx-1.

To further investigate whether Pdx-1 controls genes
participating in exocytosis, we examined the transcript
levels of clathrin heavy and light chains, VAMP-2, Rab3A,
SNAP25A, synaptotagmin-1, voltage-dependent Ca2+ chan-
nel Cav1.3 (α1D) subunit [see Electronic Supplementary
Material (ESM), address on first page of article]. Clathrin
seems to play an important role in the removal of proteases
from maturing granules [43]. VAMP-2, Rab3A, SNAP25A
and synaptotagmin I are implicated in insulin exocytosis
[44–46]. Voltage-dependent Ca2+ channel Cav1.3 (α1D)
subunit is involved inmediating beta cell insulin secretion in
response to rising concentrations of glucose [47]. All these
proteins are required for normal glucose-stimulated insulin
secretion. Pdx-1 did not regulate mRNA levels of these
genes (see ESM).

We characterised further the effects of Pdx-1 on expres-
sion of other genes potentially involved in beta cell function
(see ESM), including cyclin-dependent kinase-4 (CDK4),
insulin receptor substrate-2 (IRS2) [13, 36, 48–51], con-
nexin-36, E-cadherin, N-cadherin, neural cell adhesion
molecule (N-CAM), suppressor of cytokine signalling-3
(SOCS-3), signal transducer and activator of transcription
(STAT)-1, -3, -5 [52–55], adiponectin receptor (AdipoR)
[56] and short-chain 3-hydroxyacyl-CoA dehydrogenase
(SCHAD) [57]. Neither overexpression nor dominant-
negative suppression of Pdx-1 altered the mRNA levels of
these genes, except that induction of DNPdx-1 inhibited
STAT-5 but increased STAT-1 expression (see ESM).
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Fig. 7 Induction of DN-Pdx1 does not affect glucose metabolism.
a Induction of DN-Pdx-1 for 4 days had no effect on glycolytic flux.
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chondrial oxidation. [2-14C]Pyruvate oxidation was measured during
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Fig. 8 Pdx-1 did not alter the mRNA levels of glucokinase and other
genes involved in glucose metabolism. Pdx-1#6 (a) and DN-Pdx-1#28
(b) cells in 10-cm diameter dishes were cultured in standard medium
(11.2 mmol/l glucose) with or without 500 ng/ml doxycycline for
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expression profile in these cells was quantified by northern blotting.
20μg total RNA samples were analysed by hybridising with indicated
cDNA probes. The experiments were repeated two times with similar
results
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Discussion

Reduced expression of FGFR1 has been reported in islets
of mice with beta-cell-specific deletion of PDX-1 [13]. Con-
cordantly, we found that dominant-negative suppression of
Pdx-1 decreased mRNA levels of FGFR1 in INS-1 cells.
Our data also support previous findings that Pdx-1 acts
upstream of FGFR1 signalling in beta cells to maintain
insulin processing [36]. The mice with attenuated FGFR1c
signalling develop diabetes with age and exhibit decreased
beta cell mass, reduced Glut-2 levels and increased pro-
insulin content in beta cells owing to defective expression
of PC1/3 and 2 [36]. The present study demonstrated that
induction of DNPdx-1 caused 80–90% reduction in PC1/3
expression at both mRNA and protein levels. In addition,
PC1/3 deficiency correlated well with the severe impair-
ment of proinsulin conversion. PC1/3 is the predominant
hormone convertase in beta cells [37, 39, 58].

In agreement with previous studies in PDX-1 (+/−) mice
[12, 15], dominant-negative suppression of Pdx-1 also
caused defective insulin secretion stimulated by glucose,
leucine and K+. This was not due to the decreased insulin
content, since the data were expressed as percentage of
cellular insulin. The reduced insulin content is an expected
consequence of the lower insulin mRNA levels after sup-
pression of Pdx-1 function [27]. The inhibition of insulin

mRNA levels was not seen in rat islets after adenovirus-
mediated expression of DN-Pdx-1 [59]. Expression of
DN-Pdx-1 in rat islets also caused impaired mitochondrial
metabolism through suppression of the nuclear factor TFAM
leading to decreased expression of mitochondrially encoded
genes, including subunits of the respiratory chain complexes
[59]. In the primary cells, the reduced ATP generation from
glucose explains the inhibition of insulin secretion [59].
Induction of DN-Pdx-1 in INS-1 cells did not affect glucose
metabolism and ATP generation but rather inhibited insulin
secretion probably by affecting steps distal to the generation
of mitochondrial coupling factors. It may be speculated that
the apparent discrepancy between islets and INS-1 cells lies
in different control of mitochondrial transcriptional activity
in mature beta cells and proliferating insulinoma cells with
higher energy requirement.

Although it has been previously reported that Pdx-1
regulates beta cell glucokinase gene expression [42], the
present data and other in vivo studies do not support this
notion [13, 60]. In contrast, these studies suggest that Pdx-
1 may act in coordination with some other factors rather
than functioning independently on the glucokinase pro-
moter. Therefore, manipulation of Pdx-1 function alone is
not sufficient to regulate the beta glucokinase expression.

The defective secretory response cannot be explained
by an increase in impaired cytosolic [Ca2+], as the K+-
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Fig. 9 Measurement of cytosolic
[Ca 2+] and membrane capaci-
tance in DN-Pdx-1#28 cells.
a DN-Pdx1#28 cells were treated
with doxycycline and infected
with rAdCAGcAQ as described
in Materials and methods. In-
fected cells were perifused with
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evoked response was not inhibited. Moreover, the process
of exocytosis was unaffected as monitored by Ca2+-in-
duced changes in membrane capacitance or as judged from
the expression profile of the principal genes implicated in
the final steps of insulin secretion. Similarly, the attenuated
insulin secretion is not due to inhibition of proinsulin pro-
cessing, as co-secreted human growth hormone (transiently
transfected), which is not processed by PC-1/3, was equally
unaffected. The most likely explanation for the impaired
insulin secretion in response to nutrients and K+ depolar-
isation is the pronounced decrease in cAMP levels after
suppression of Pdx-1 function.

This is a consequence of reduced GLP-1R expression. It
has been demonstrated that the GLP-1R is capable of
regulating basal cellular cAMP levels even in the absence of
the ligand [61].We found that both basal andGLP-1R agonist
exendin-4-induced cellular cAMP levels were markedly
reduced by dominant-negative suppression of Pdx-1. DN-
Pdx-1 also inhibited exendin-4- but not forskolin+IBMX-
stimulated insulin secretion, the latter combination resulting
in a more marked rise in cellular cAMP levels. Increasing
cAMP levels with forskolin and IBMX also completely
restored glucose-stimulated insulin secretion in rat islets
infected with adenoviral DN-Pdx-1 [59]. The preserved
exocytotic response of DNPdx-1 cells to Ca2+ infusion
through the patch-clamp pipette indicates that dialysis of the
cells has eliminated the inhibition observed when K+

depolarisation was used to raise cytosolic [Ca2+]. We there-
fore propose that Pdx-1 may affect insulin secretion by
changing cellular cAMP levels through GLP-1R pathways.
The preserved secretory response to forskolin/IBMX may
be explained by direct activation of exocytosis through the
low-affinity, protein kinase A-independent cAMP-GEF II
mechanism operative in the beta cell [62]. In addition, as
GLP-1 has been shown to regulate Pdx-1 activation [63–
65], there may exist a functional regulatory loop between
GLP-1 and Pdx-1. Furthermore, an elegant study on mice
lacking GLP-1 and GIP receptors has demonstrated that
gluco-incretin hormones regulate insulin secretion by three
different mechanisms [66]. First, they have additive in-
sulinotropic effects on cells during oral glucose tolerance
tests. Second, in the absence of the GLP-1 receptor, there is
suppression of the first phase of insulin secretion measured
in vivo, but not in the isolated islets, indicating a role for this
receptor in the function of glucose sensors that are located
outside the endocrine pancreas and that control first-phase
secretion. Third, absence of both receptors causes a cell-
autonomous insulin secretion defect at a site distal to plasma
membrane depolarisation [66]. GLP-1R plays an important
role in the regulation of beta cell neogenesis, development,
differentiation and survival as well as insulin secretion [50,
51, 67–69]. GLP-1-stimulated insulin secretion was not
reduced in Pdx-1+/−mice [12], but there was an attenuation
in mice with beta-cell-specific deletion of Pdx-1 [70]. The
results obtained in the latter mouse model resemble those of
our INS-1 expressing DN-Pdx-1, which could be explained
by the shift from a beta cell to an alpha cell phenotype seen
in mice with beta-cell-specific deletion of Pdx-1 and our
INS-1 cells expressing DN-Pdx-1 [13, 27] (as discussed

below). This phenotype shift is not obvious in Pdx-1+/−
mice [12]. Since it is not known which mouse model most
closely resembles the phenotype of MODY-4, data from
different studies should be taken into account.

We have previously demonstrated that dominant-nega-
tive suppression of Pdx-1 in INS-1 cells led to reduced beta-
cell-specific gene expression and increased glucagon levels
[27]. Concordantly, beta-cell-specific deletion of Pdx-1 also
results in decreased beta cell mass and elevated alpha cell
population [13]. The loss of beta-cell-like phenotypes may
contribute to the impaired insulin secretion and defective
expression of GLP-1R and PC1/3 in our INS-1 cells ex-
pressing DN-Pdx-1. Likewise, the glucose transporter Glut-
2, which is absent from alpha cells, was repressed in INS-1
cells expressing DN-Pdx-1, coinciding with a marked
increase in glucagon transcript levels [27]. Both GLP-1R
and PC1/3 are highly expressed in beta cells and are, re-
spectively, not detected or barely detected in alpha cells [39,
58, 71]. Although the shift from a beta cell to an alpha cell
phenotype has also been demonstrated in mice with beta-
cell-specific deletion of Pdx-1 [13], the pathogenesis
implicated in beta cell dysfunction in MODY-4 patients re-
mains to be defined.

In conclusion, the severely impaired proinsulin processing
combined with decreased expression of GLP-1R and re-
duced intracellular cAMP levels, rather than metabolic de-
fects or altered exocytosis, may contribute to the beta cell
dysfunction induced by Pdx-1 deficiency. Suppression of
Pdx-1 favours loss of beta cell phenotype and beta-cell-
specific gene expression. The molecular mechanisms under-
lying beta cell pathology of MODY-4 are thus distinct from
those of MODY-1 and MODY-3.
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