552 research outputs found
Polarizabilities of Push-Pull Carbon Nanotubes: Semi-Empirical PM6 Study
A series of push-pull armchair (5,5) single-walled carbon nanotubes (D-CNTs-NO2) nbspsaturated with hydrogen at the ends have been studied using semi-empirical PM6 methods. As a result, it is found that the polarizability strongly depends on the strength of Pi-electron donor substituent. Particularly, for both static and dynamic polarizabilities the largest increment of Deltaalpha is seen to be due to - NMe2 donor group (Deltaalpha =100 a.u.). Miller QSAR-polarizability, empirical models based on molecular volumes(Vm) and electrons number (Ne) correlatenbsp well (Rgt0.97) with PM6 polarizabilities results
Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems
In this work, cellulose nanocrystals (CNCs) were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX) as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus). The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.The authors would like to acknowledge the Department of Education, Universities and Investigation of the Basque Government (project IT1008-16), the Federal Agency for Support and Evaluation of Graduate Education (CAPES) through process BEX 8710/14-7, the Mexican Council of Science and Technology (CONACyT) through scholarship 216178 and theBrazilian National Council for Scientific and Technological Development for financial support through CNPq (# 482251/2013-1) for financially supporting this work. The authors also thank Maite Insausti and Oihane Arriortua for their kind help and support with Nanosizer and SGIker of the University of the Basque Country UPV/EHU for technical and human support provided with XRD, NMR and AFM characterizations and Altair Faes of the Regional Center of Oncology of the Federal University of Pelotas (UFPel) for the use of the equipment Eldorado 78
Primordial metallic melt in the deep mantle
Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3–3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis
Blow-Up For The Euler-Bernoulli Beam Problem With A Fractional Boundary Dissipation
We consider a beam problem with a polynomial source and a boundary damping of order between 0 and 1. Sufficient conditions on the initial data are established to have blow up of solutions in finite time
Effective Dose and Size Specific Dose Estimation with and without Tube Current Modulation for Thoracic Computed Tomography Examinations: A Phantom Study
The purpose of this study is to reduce radiation dose for chest CT examination by including Tube Current Modulation (TCM) to a standard CT protocol. A scan of an anthropomorphic male Alderson phantom was performed on a 128-slice scanner. The estimation of effective dose (ED) in both scans with and without mAs modulation was done via multiplication of Dose Length Product (DLP) to a conversion factor. Results were compared to those measured with a CT-Expo software. The size specific dose estimation (SSDE) values were obtained by multiplication of the volume CT dose index (CTDIvol) with a conversion size factor related to the phantom’s effective diameter. Objective assessment of image quality was performed with Signal to Noise Ratio (SNR) measurements in phantom. SPSS software was used for data analysis. Results showed including CARE Dose 4D; ED was lowered by 48.35% and 51.51% using DLP and CT-expo, respectively. In addition, ED ranges between 7.01 mSv and 6.6 mSv in case of standard protocol, while it ranges between 3.62 mSv and 3.2 mSv with TCM. Similar results are found for SSDE; dose was higher without TCM of 16.25 mGy and was lower by 48.8% including TCM. The SNR values calculated were significantly different (p=0.03<0.05). The highest one is measured on images acquired with TCM and reconstructed with Filtered back projection (FBP). In conclusion, this study proves the potential of TCM technique in SSDE and ED reduction and in conserving image quality with high diagnostic reference level for thoracic CT examinations
Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing
This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoOx properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas
Molybdenum isotopes in plume-influenced MORBs reveal recycling of ancient anoxic sediments
Under modern oxidising Earth surface conditions, dehydrated subducted slabs show Mo isotope compositions as low as δ98/95Mo = −1.5 ‰, compared to the depleted mantle δ98/95Mo = −0.2 ‰. Such light Mo isotope compositions reflect the redox-dependent aqueous mobility of isotopically heavy Mo associated with slab dehydration. Here we analysed basaltic glasses from the South-Mid Atlantic Ridge, whose parental melts are influenced by the enriched Discovery and Shona mantle plumes. We report increasingly higher δ98/95Mo of up to −0.1 ‰ from the most depleted samples towards those tapping more enriched mantle sources. δ98/95Mo values correlate with radiogenic Sr and Nd isotopes, which indicates the recycling of Proterozoic sediments with a Mo isotopic composition that was not affected by subduction-related, oxic dehydration. We propose that the Mo isotope signatures were retained during subduction and reflect anoxic conditions during deep sea sedimentation in the mid-Proterozoic. Finally, Mo isotope fractionation between different terrestrial reservoirs likely depends on the slab redox budget, and therefore on the timing of subduction with regard to Earth’s surface oxygenation
Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants
International audienceHalopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes a higher potential of xenobiotic phytoremediation in comparison with glycophytes
An increased abundance of tumor-infiltrating regulatory t cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma
CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8 + T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. Copyright: © 2014 Tang et al
Exponential growth for wave equation with fractional boundary dissipation and boundary source term
- …
