47 research outputs found

    Impact of Vegetable Oil Type on the Rheological and Tribological Behavior of Montmorillonite-Based Oleogels

    Get PDF
    We formulated and characterized oleogels based on montmorillonite clay and vegetable oils that could serve as eco-friendly semi-solid lubricants. In particular, we studied the influence of the physical-chemical properties of olive, castor, soybean, linseed, and sunflower oils on the rheological, chemical, thermal, and tribological properties of the semi-solid lubricants. We prepared the oleogels via the highly intensive mixing of vegetable oils with clay at a concentration of 30 wt.%. The oleogels exhibited shear-thinning, thixotropy, structural recovery, and gel-like behavior commonly related to that of a three-dimensional network. The results were corroborated via XRD measurements showing the presence of intercalated nanoclay structures well-dispersed in the vegetable oil. Empirical correlations between the content of saturated (SFAs), unsaturated (UFAs), mono-unsaturated (MUFAs) and poly-unsaturated (PUFAs) fatty acids and the plateau modulus of the aerogels were found. From these experimental results, we can conclude that the fatty acid profile of the vegetable oils exerts an important influence on the rheological and tribological properties of resulting clay and vegetable oil oleogelsThis research was supported by FEDER European Programme and Junta de Andalucía, grant number PY20_00751. The authors acknowledge the X-ray Diffraction Service (Universidad de Huelva) for providing full access and assistance in X-ray Diffraction measurement

    Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels

    Get PDF
    The present work focuses on the development of lignin micro- and nano-structures obtained by means of electrohydrodynamic techniques aimed to be potentially applicable as thickening or structuring agents in vegetable oils. The micro- and nano-structures used were mainly composed of eucalyptus kraft lignin (EKL), which were doped to some extent with polyvinylpyrrolidone (PVP). EKL/PVP solutions were prepared at different concentrations (10–40 wt.%) and EKL:PVP ratios (95:5–100:0) in N, N-dimethylformamide (DMF) and further physico-chemically and rheologically characterized. Electrosprayed micro-sized particles were obtained from solutions with low EKL/PVP concentrations (10 and 20 wt.%) and/or high EKL:PVP ratios, whereas beaded nanofiber mats were produced by increasing the solution concentration and/or decreasing EKL:PVP ratio, as a consequence of improved extensional viscoelastic properties. EKL/PVP electrospun nanofibers were able to form oleogels by simply dispersing them into castor oil at nanofiber concentrations higher than 15 wt.%. The rheological properties of these oleogels were assessed by means of small-amplitude oscillatory shear (SAOS) and viscous flow tests. The values of SAOS functions and viscosity depended on both the nanofiber concentration and the morphology of nanofiber templates and resemble those exhibited by commercial lubricating greases made from traditional metallic soaps and mineral oilsThis work is part of a research project (Ref. RTI2018-096080-B-C21) sponsored by the MICINN-FEDER I+D+i Spanish Programme. The authors gratefully acknowledge their financial support. J.F.R.-V. acknowledges receiving the Ph.D. Research Grant PRE2019-090632 from MICINN (Spain

    Production of lignin/cellulose acetate fiber-bead structures by electrospinning and exploration of their potential as green structuring agents for vegetable lubricating oils

    Get PDF
    In this work we developed electrospun lignin/cellulose acetate fiber-bead nanostructures and explored their potential as structuring agents for vegetable oils to be used as eco-friendly lubricating oleogels. A variety of nanostructures were obtained from solutions containing 20 or 30 wt. % eucalyptus Kraft lignin (EKL) and cellulose acetate (CA) in variable weight ratios from 100:0 to 60:40 in an N,N-dimethylformamide/acetone mixture. The EKL/CA solutions were characterized in physicochemical terms from viscosity, surface tension and electrical conductivity measurements. Also, the electrospun nanostructures were characterized morphologically by scanning electron microscopy. Their morphology was found to be strongly dependent on the rheological properties of the biopolymer solution. Electrospun EKL/CA beaded nanofibers and well-developed uniform nanofiber mats allowed oleogels to be easily obtained by simply dispersing them in castor oil whilst nanoparticle clusters gave rise to unstable dispersions. The rheological properties of these gel-like dispersions can be tailored through the membrane concentration and/or EKL/CA ratio and depend to a large extent on the morphology of the electrospun nanostructures. The rheological and tribological properties of the oleogels were comparable to those previously reported for conventional and other bio-based lubricating greases. Overall, electrospun EKL/CA nanofibers allow easy, efficient structuring of vegetable oils to obtain oleogels holding potential for use as lubricants.Research Project RTI2018–096080-B-C21, funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. PhD Research Grant PRE2019–090632 from Spain’s Ministry of Science and Innovation. Funding for open access charge: Universidad de Huelva / CBU

    Oil structuring properties of electrospun Kraft lignin/ cellulose acetate nanofibers for lubricating applications: influence of lignin source and lignin/cellulose acetate ratio

    Get PDF
    In the present work, electrospun Kraft lignin/cellulose acetate nanostructures were produced, assessed and proposed as structuring or thickening agents of castor oil for lubricating applications. Solutions of Kraft lignins (KL) derived from different sources (eucalyptus, poplar and olive tree pruning) and cellulose acetate (CA) were prepared and used as feed for electrospinning. The rheological properties (shear and extensional viscosity), electrical conductivity and surface tension of KL/CA solutions influence the morphology of the electrospun nanofibers, which in turn is affected by the chemical structure and composition of the Kraft lignins. Electrospun KL/CA nanostructures consisting of filament-interconnected nanoparticles, beaded nanofibers or uniform nanofiber mats were able to form gel-like homogeneous fine dispersions by simply mechanically dispersing them into castor oil. The swelling of KL/ CA nanofibers in the percolation network was demonstrated. The rheological, tribological and microstructural properties of these oleogels are essentially governed by the morphological characteristics of the electrospun nanostructures, i.e. fiber diameter, number of beads and porosity. Rheological properties of the resulting oleogels may be tailored by modifying the lignin source and KL:CA weight ratio. According to their rheological and tribological properties, KL/ CA electrospun nanostructures-based oleogels can be proposed as a sustainable alternative to conventional lubricating greases.This work is part of a research project (RTI2018-096080-B-C21) funded by MCIN/AEI/10. 13039/501100011033 and by “ERDF A way of making Europe”. J.F. Rubio-Valle has also received a Ph.D. Research Grant PRE2019-090632 from Ministerio de Ciencia e Innovación (Spain). The financial support is gratefully acknowledged. Universidad de Huelva/CBUA thanks to the CRUE-CSIC agreement with Springer Nature

    Study of CdS/CdS Nanoparticles Thin Films Deposited by Soft Chemistry for Optoelectronic Applications

    Get PDF
    Chalcogenides semiconductors are currently being studied as active layers in the development of electronic devices in the field of applied technology. In the present paper, cadmium sulfide (CdS) thin films containing nanoparticles of the same material as the active layer were produced and analyzed for their application in fabricating optoelectronic devices. CdS thin films and CdS nanoparticles were obtained via soft chemistry at low temperatures. The CdS thin film was deposited via chemical bath deposition (CBD); the CdS nanoparticles were synthesized via the precipitation method. The construction of a homojunction was completed by incorporating CdS nanoparticles on CdS thin films deposited via CBD. CdS nanoparticles were deposited using the spin coating technique, and the effect of thermal annealing on the deposited films was investigated. In the modified thin films with nanoparticles, a transmittance of about 70% and a band gap between 2.12 eV and 2.35 eV were obtained. The two characteristic phonons of the CdS were observed via Raman spectroscopy, and the CdS thin films/CdS nanoparticles showed a hexagonal and cubic crystalline structure with average crystallite size of 21.3–28.4 nm, where hexagonal is the most stable for optoelectronic applications, with roughness less than 5 nm, indicating that CdS is relatively smooth, uniform and highly compact. In addition, the characteristic curves of current-voltage for as-deposited and annealed thin films showed that the metal-CdS with the CdS nanoparticle interface exhibits ohmic behavior.This work was partial financial support from CONACyT through the grants Problemas Nacionales 3529-2016 and Ciencia Básica 2013-IOO17-22111.SEP-CONACYT I0017-221117, Becas Nacionales, 818352 and Government of the State of Chihuahua through the Secretariat of Innovation and Economic Development, through the Institute of Innovation and Competitiveness

    Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition

    Get PDF
    This work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by nuclear magnetic resonance, size exclusion chromatography, fourier-transform infrared spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.This work is part of two coordinated research projects (RTI2018-096080-B-C21 and RTI2018-096080-B-C22) funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. The authors also wish to thank the Comunidad de Madrid and MCIU/AEI/FEDER, EU for funding this study via Projects SUSTEC-CM S2018/EMT-4348. The authors also acknowledge the pre-doctoral grants from José Fernando Rubio Valle (Ref. PRE2019-090632). The contribution of COST Action LignoCOST (CA17128), supported by COST (European Cooperation in Science and Technology), in promoting interaction, exchange of knowledge and collaborations in the field of lignin valorization is gratefully acknowledged

    Short-term changes in klotho and FGF23 in heart failure with reduced ejection fraction—a substudy of the DAPA-VO2 study

    Get PDF
    The klotho and fibroblast growth factor 23 (FGF-23) pathway is implicated in cardiovascular pathophysiology. This substudy aimed to assess the changes in klotho and FGF-23 levels 1-month after dapagliflozin in patients with stable heart failure and reduced ejection fraction (HFrEF). The study included 29 patients (32.2% of the total), with 14 assigned to the placebo group and 15 to the dapagliflozin, as part of the double-blind, randomized clinical trial [DAPA-VO2 (NCT04197635)]. Blood samples were collected at baseline and after 30 days, and Klotho and FGF-23 levels were measured using ELISA Kits. Between-treatment changes (raw data) were analyzed by using the Mann-Whitney test and expressed as median (p25%–p75%). Linear regression models were utilized to analyze changes in the logarithm (log) of klotho and FGF-23. The median age was 68.3 years (60.8–72.1), with 79.3% male and 81.5% classified as NYHA II. The baseline medians of left ventricular ejection fraction, glomerular filtration rate, NT-proBNP, klotho, and FGF-23 were 35.8% (30.5–37.8), 67.4 ml/min/1.73 m2 (50.7–82.8), 1,285 pg/ml (898–2,305), 623.4 pg/ml (533.5–736.6), and 72.6 RU/ml (62.6–96.1), respectively. The baseline mean peak oxygen uptake was 13.1 ± 4.0 ml/kg/min. Compared to placebo, patients on dapagliflozin showed a significant median increase of klotho [Δ+29.5, (12.9–37.2); p = 0.009] and a non-significant decrease of FGF-23 [Δ−4.6, (−1.7 to −5.4); p = 0.051]. A significant increase in log-klotho (p = 0.011) and a decrease in log-FGF-23 (p = 0.040) were found in the inferential analysis. In conclusion, in patients with stable HFrEF, dapagliflozin led to a short-term increase in klotho and a decrease in FGF-23

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
    corecore