Oil structuring properties of electrospun Kraft lignin/ cellulose acetate nanofibers for lubricating applications: influence of lignin source and lignin/cellulose acetate ratio

Abstract

In the present work, electrospun Kraft lignin/cellulose acetate nanostructures were produced, assessed and proposed as structuring or thickening agents of castor oil for lubricating applications. Solutions of Kraft lignins (KL) derived from different sources (eucalyptus, poplar and olive tree pruning) and cellulose acetate (CA) were prepared and used as feed for electrospinning. The rheological properties (shear and extensional viscosity), electrical conductivity and surface tension of KL/CA solutions influence the morphology of the electrospun nanofibers, which in turn is affected by the chemical structure and composition of the Kraft lignins. Electrospun KL/CA nanostructures consisting of filament-interconnected nanoparticles, beaded nanofibers or uniform nanofiber mats were able to form gel-like homogeneous fine dispersions by simply mechanically dispersing them into castor oil. The swelling of KL/ CA nanofibers in the percolation network was demonstrated. The rheological, tribological and microstructural properties of these oleogels are essentially governed by the morphological characteristics of the electrospun nanostructures, i.e. fiber diameter, number of beads and porosity. Rheological properties of the resulting oleogels may be tailored by modifying the lignin source and KL:CA weight ratio. According to their rheological and tribological properties, KL/ CA electrospun nanostructures-based oleogels can be proposed as a sustainable alternative to conventional lubricating greases.This work is part of a research project (RTI2018-096080-B-C21) funded by MCIN/AEI/10. 13039/501100011033 and by “ERDF A way of making Europe”. J.F. Rubio-Valle has also received a Ph.D. Research Grant PRE2019-090632 from Ministerio de Ciencia e Innovación (Spain). The financial support is gratefully acknowledged. Universidad de Huelva/CBUA thanks to the CRUE-CSIC agreement with Springer Nature

    Similar works