157 research outputs found

    Development of guidelines for giving community presentations about eating disorders: a Delphi study

    Get PDF
    Background: Concerns exist around how to talk about eating disorders (EDs) due to evidence that suggests discussing ED symptoms and behaviours may cause or worsen symptoms in vulnerable people. Using expert consensus, we developed a set of guidelines for giving safe community presentations about EDs. Methods: Participants with professional ED expertise, and people with lived experience of an ED, were recruited for a Delphi study. N = 26 panel members rated 367 statements for both a) inclusion in guidelines, and b) their potential to be helpful (increase knowledge, reduce stigma) or harmful (increase stigma, cause/worsen ED symptoms). After each round of the study, statements were classified as endorsed, re-rate, or not endorsed. Results: 208 statements were endorsed by the panel over three rounds. 13 statements were strongly endorsed in the first round, with both people with lived experience and professionals agreeing it is important for presentations to include information on etiology of EDs and to promote help-seeking. Several statements had a high level of disagreement between those with lived experience and professionals, including the idea that presentations should suggest dieting is likely to result in weight gain. Discussion: The experts were able to develop consensus on a wide range of issues. Panel members, particularly people with lived experience, were sensitive to aspects of presentations that may be harmful to an audience. The guidelines fill an important gap in the literature and provide guidance to those educating the public about EDs; they should, however, be further evaluated to test their efficacy

    An epigenetic clock for human skeletal muscle.

    Get PDF
    BACKGROUND: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epigenetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and chronological age in this tissue. METHODS: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association study of age-associated DNA methylation patterns in skeletal muscle. RESULTS: The newly developed clock uses 200 cytosine-phosphate-guanine dinucleotides to estimate chronological age in skeletal muscle, 16 of which are in common with the 353 cytosine-phosphate-guanine dinucleotides of the pan-tissue clock. The muscle clock outperformed the pan-tissue clock, with a median error of only 4.6 years across datasets (vs. 13.1 years for the pan-tissue clock, P < 0.0001) and an average correlation of ρ = 0.62 between actual and predicted age across datasets (vs. ρ = 0.51 for the pan-tissue clock). Lastly, we identified 180 differentially methylated regions with age in skeletal muscle at a false discovery rate < 0.005. However, gene set enrichment analysis did not reveal any enrichment for gene ontologies. CONCLUSIONS: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than the pan-tissue clock. We implemented the muscle clock in an r package called Muscle Epigenetic Age Test available on Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes

    High-speed fixed-target serial virus crystallography

    Get PDF
    We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities

    Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome

    Get PDF
    Background: Protein supplementation improves physiological adaptations to endurance training, but the impact on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5- weeks of endurance training. Results: Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially expressed after 5-weeks of endurance training in both groups (q-value 0.05). Endurance training primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater in PRO than in CON. Conclusions: Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov as NCT03462381, March 12, 201

    Development of a complex intervention to test the effectiveness of peer support in type 2 diabetes

    Get PDF
    BACKGROUND: Diabetes is a chronic illness which requires the individual to assume responsibility for their own care with the aim of maintaining glucose and blood pressure levels as close to normal as possible. Traditionally self management training for diabetes has been delivered in a didactic setting. In recent times alternatives to the traditional delivery of diabetes care have been investigated, for example, the concept of peer support which emphasises patient rather than professional domination. The aim of this paper is to describe the development of a complex intervention of peer support in type 2 diabetes for a randomised control trial in a primary care setting. METHODS: The Medical Research Council (MRC) framework for the development and evaluation of complex interventions for randomised control trials (RCT) was used as a theoretical guide to designing the intervention. The first three phases (Preclinical Phase, Phase 1, Phase 2) of this framework were examined in depth. The Preclinical Phase included a review of the literature relating to type 2 diabetes and peer support. In Phase 1 the theoretical background and qualitative data from 4 focus groups were combined to define the main components of the intervention. The preliminary intervention was conducted in Phase 2. This was a pilot study conducted in two general practices and amongst 24 patients and 4 peer supporters. Focus groups and semi structured interviews were conducted to collect additional qualitative data to inform the development of the intervention. RESULTS: The four components of the intervention were identified from the Preclinical Phase and Phase 1. They are: 1. Peer supporters; 2. Peer supporter training; 3. Retention and support for peer supporters; 4. Peer support meetings. The preliminary intervention was implemented in the Phase 2. Findings from this phase allowed further modeling of the intervention, to produce the definitive intervention. CONCLUSION: The MRC framework was instrumental in the development of a robust intervention of peer support of type 2 diabetes in primary care. TRIAL REGISTRATION: Current Controlled Trials ISRCTN42541690

    CYP17 blockade by abiraterone: further evidence for frequent continued hormone-dependence in castration-resistant prostate cancer

    Get PDF
    The limited prognosis of patients with castration-resistant prostate cancer (CRPC) on existing hormonal manipulation therapies calls out for the urgent need for new management strategies. The novel, orally available, small-molecule compound, abiraterone acetate, is undergoing evaluation in early clinical trials and emerging data have shown that the selective, irreversible and continuous inhibition of CYP17 is safe with durable responses in CRPC. Importantly, these efficacy data along with strong preclinical evidence indicate that a significant proportion of CRPC remains dependant on ligand-activated androgen receptor (AR) signalling. Coupled with the use of innovative biological molecular techniques, including the characterisation of circulating tumour cells and ETS gene fusion analyses, we have gained insights into the molecular basis of CRPC. We envision that a better understanding of the mechanisms underlying resistance to abiraterone acetate, as well as the development of validated predictive and intermediate endpoint biomarkers to aid both patient selection and monitor response to treatment, will improve the outcome of CRPC patients

    The short-term effect of high versus moderate protein intake on recovery after strength training in resistance-trained individuals

    Get PDF
    Background: Dietary protein intakes up to 2.9 g.kg-1.d-1 and protein consumption before and after resistance training may enhance recovery, resulting in hypertrophy and strength gains. However, it remains unclear whether protein quantity or nutrient timing is central to positive adaptations. This study investigated the effect of total dietary protein content, whilst controlling for protein timing, on recovery in resistance trainees. Methods: Fourteen resistance-trained individuals underwent two 10-day isocaloric dietary regimes with a protein content of 1.8 g.kg-1.d-1 (PROMOD) or 2.9 g.kg-1.d-1 (PROHIGH) in a randomised, counterbalanced, crossover design. On days 8-10 (T1-T3), participants undertook resistance exercise under controlled conditions, performing 3 sets of squat, bench press and bent-over rows at 80% 1 repetition maximum until volitional exhaustion. Additionally, participants consumed a 0.4 g.kg-1 whey protein concentrate/isolate mix 30 minutes before and after exercise sessions to standardise protein timing specific to training. Recovery was assessed via daily repetition performance, muscle soreness, bioelectrical impedance phase angle, plasma creatine kinase (CK) and tumor necrosis factor-Ξ± (TNF-Ξ±). Results: No significant differences were reported between conditions for any of the performance repetition count variables (p>0.05). However, within PROMOD only, squat performance total repetition count was significantly lower at T3 (19.7 Β± 6.8) compared to T1 (23.0 Β± 7.5; p=0.006). Pre and post-exercise CK concentrations significantly increased across test days (p≀0.003), although no differences were reported between conditions. No differences for TNF-Ξ± or muscle soreness were reported between dietary conditions. Phase angle was significantly greater at T3 for PROHIGH (8.26 Β± 0.82Β°) compared with PROMOD (8.08 Β± 0.80Β°; p=0.012). Conclusions: When energy intake and peri-exercise protein intake was controlled for, a short term PROHIGH diet did not improve markers of muscle damage or soreness in comparison to a PROMOD approach following repeated days of intensive training. Whilst it is therefore likely that protein intakes (1.8g.kg-1.d-1) may be sufficient for resistance-trained individuals, it is noteworthy that both lower body exercise performance and bioelectrical phase angle were maintained with PROHIGH. Longer term interventions are warranted to determine whether PROMOD intakes are sufficient during prolonged training periods or when extensive exercise (e.g. training twice daily) is undertaken

    Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate

    Get PDF
    Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ∼8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ∼0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior

    Tracking the spatial diffusion of influenza and norovirus using telehealth data: A spatiotemporal analysis of syndromic data

    Get PDF
    Background: Telehealth systems have a large potential for informing public health authorities in an early stage of outbreaks of communicable disease. Influenza and norovirus are common viruses that cause significant respiratory and gastrointestinal disease worldwide. Data about these viruses are not routinely mapped for surveillance purposes in the UK, so the spatial diffusion of national outbreaks and epidemics is not known as such incidents occur. We aim to describe the geographical origin and diffusion of rises in fever and vomiting calls to a national telehealth system, and consider the usefulness of these findings for influenza and norovirus surveillance. Methods: Data about fever calls (5- to 14-year-old age group) and vomiting calls (β‰₯ 5-year-old age group) in school-age children, proxies for influenza and norovirus, respectively, were extracted from the NHS Direct national telehealth database for the period June 2005 to May 2006. The SaTScan space-time permutation model was used to retrospectively detect statistically significant clusters of calls on a week-by-week basis. These syndromic results were validated against existing laboratory and clinical surveillance data. Results: We identified two distinct periods of elevated fever calls. The first originated in the North-West of England during November 2005 and spread in a south-east direction, the second began in Central England during January 2006 and moved southwards. The timing, geographical location, and age structure of these rises in fever calls were similar to a national influenza B outbreak that occurred during winter 2005–2006. We also identified significantly elevated levels of vomiting calls in South-East England during winter 2005–2006. Conclusion: Spatiotemporal analyses of telehealth data, specifically fever calls, provided a timely and unique description of the evolution of a national influenza outbreak. In a similar way the tool may be useful for tracking norovirus, although the lack of consistent comparison data makes this more difficult to assess. In interpreting these results, care must be taken to consider other infectious and non-infectious causes of fever and vomiting. The scan statistic should be considered for spatial analyses of telehealth data elsewhere and will be used to initiate prospective geographical surveillance of influenza in England.
    • …
    corecore