38 research outputs found
Synthesis and characterization of Co3O4 nanoparticles for use as pigments in solar absorbing paints
This aim of this research is to produce Co3O4 oxide by means of one-step solution novel combustion methods usingaspatic acid (C4H7NO4); lysine (C6H14N2O2); tris (hydroximethyl) aminomethane (NH2C (CH2OH)3) and ethylene diaminetetra-acetic acid (C10H16N2O8) as fuels. The pigments were characterized using X-ray diffraction, scanning andtransmission electron microscopy, infrared spectroscopy with Fourier transform and UV-VIS-IR Spectrophotometry.The paint based on alkyd resin was made from pigments obtained (Co3O4 oxide). In order to make a comparison of thethermal emittance of the paint, two different formulations were prepared and these coating are named "absorbent paintcoating": one that included 1% by weight of aluminum in metallic powder and another, with 1% of copper in metallicpowder, respectively. The solar absorbance for the Co3O4 powders, plus quartz cuvette, gave a value of 0.9 in all cases.An extraordinary value of absorption on the coatings between 95 and 96% was noted. These results suggested that thesynthesis of combustion in solution makes it possible to obtain a Co3O4 absorbent pigment with different fuels.These syntheses have a low environmental impact because they are one-step processes. All use low amounts of reactiveash obtained at a calcination of about 500 °C. These results suggest the possibility of utilizing this oxide in absorbentsolar paints.Fil: Gardey Merino, María Celeste. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Grupo CLIOPE. Energía, Ambiente y Desarrollo Sustentable; ArgentinaFil: Rodriguez Ibarra, Mariana Estela. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Grupo CLIOPE. Energía, Ambiente y Desarrollo Sustentable; ArgentinaFil: Lascalea, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Vazquez, Patricia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentin
Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
Ternary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine(Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer–Emmett– Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOxand others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.Centro de Investigación y Desarrollo en Ciencias Aplicada
Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
Ternary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine(Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer–Emmett– Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOxand others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.Centro de Investigación y Desarrollo en Ciencias Aplicada
Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
Ternary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine(Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer–Emmett– Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOxand others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.Centro de Investigación y Desarrollo en Ciencias Aplicada
The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients
Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Global urban environmental change drives adaptation in white clover
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale