83 research outputs found
Circulating Angiopoietins-1 and -2, Angiopoietin Receptor Tie-2 and Vascular Endothelial Growth Factor-A as Biomarkers of Acute Myocardial Infarction: a Prospective Nested Case-Control Study
<p>Abstract</p> <p>Background</p> <p>Angiogenesis is up-regulated in myocardial ischemia. However, limited data exist assessing the value of circulating angiogenic biomarkers in predicting future incidence of acute myocardial infarction (AMI). Our aim was to examine the association between circulating levels of markers of angiogenesis with risk of incident acute myocardial infarction (AMI) in men and women.</p> <p>Methods</p> <p>We performed a case-control study (nested within a large cohort of persons receiving care within Kaiser Permanente of Northern California) including 695 AMI cases and 690 controls individually matched on age, gender and race/ethnicity.</p> <p>Results</p> <p>Median [inter-quartile range] serum concentrations of vascular endothelial growth factor-A (VEGF-A; 260 [252] vs. 235 [224] pg/mL; p = 0.01) and angiopoietin-2 (Ang-2; 1.18 [0.66] vs. 1.05 [0.58] ng/mL; p < 0.0001) were significantly higher in AMI cases than in controls. By contrast, endothelium-specific receptor tyrosine kinase (Tie-2; 14.2 [3.7] vs. 14.0 [3.1] ng/mL; p = 0.07) and angiopoietin-1 levels (Ang-1; 33.1 [13.6] vs. 32.5 [12.7] ng/mL; p = 0.52) did not differ significantly by case-control status. After adjustment for educational attainment, hypertension, diabetes, smoking, alcohol consumption, body mass index, LDL-C, HDL-C, triglycerides and C-reactive protein, each increment of 1 unit of Ang-2 as a Z score was associated with 1.17-fold (95 percent confidence interval, 1.02 to 1.35) increased odds of AMI, and the upper quartile of Ang-2, relative to the lowest quartile, was associated with 1.63-fold (95 percent confidence interval, 1.09 to 2.45) increased odds of AMI.</p> <p>Conclusions</p> <p>Our data support a role of Ang-2 as a biomarker of incident AMI independent of traditional risk factors.</p
Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice
International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia
Dilated Thin-Walled Blood and Lymphatic Vessels in Human Endometrium: A Potential Role for VEGF-D in Progestin-Induced Break-Through Bleeding
Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent
Learning genetic epistasis using Bayesian network scoring criteria
<p>Abstract</p> <p>Background</p> <p>Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is <it>Multifactor Dimensionality Reduction </it>(MDR). Jiang et al. created a combinatorial epistasis learning method called <it>BNMBL </it>to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL.</p> <p>Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model.</p> <p>Results</p> <p>We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at <it>recall </it>using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set.</p> <p>Conclusions</p> <p>We conclude that representing epistatic interactions using BN models and scoring them using a BN scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring criterion with large values of a hyperparameter α appears more promising than a number of alternatives.</p
Targeting lymphangiogenesis to prevent tumour metastasis
Recent studies involving animal models of cancer and clinicopathological analyses of human tumours suggest that the growth of lymphatic vessels (lymphangiogenesis) in or nearby tumours is associated with the metastatic spread of cancer. The best validated molecular signalling system for tumour lymphangiogenesis involves the secreted proteins vascular endothelial growth factor-C (VEGF-C) and VEGF-D that induce growth of lymphatic vessels via activation of VEGF receptor-3 (VEGFR-3) localised on the surface of lymphatic endothelial cells. In this review, we discuss the evidence supporting a role for this signalling system in the spread of cancer and potential approaches for blocking this system to prevent tumour metastasis
‘In vivo’ optical approaches to angiogenesis imaging
In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself
Correlating Global Gene Regulation to Angiogenesis in the Developing Chick Extra-Embryonic Vascular System
International audienceBACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHOLOGY/PRINCIPAL FINDINGS: We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis
Consensus guidelines for the use and interpretation of angiogenesis assays
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
- …