141 research outputs found

    Racial Salary Discrimination in the NBA: 2008-2009

    Get PDF
    This paper examines racial salary differences in the National Basketball Association for the 2008-2009 season. Previous studies that used data from the mid-1980s estimated salary premiums of between 16 and 20% for white players whose performance was comparable to black players. A study that used data from the late-1980s to early-1990s showed no significant salary differential between white and black players. Another study, using data from the 1990s, found no racial discrimination in the NBA, but did find a height premium of 7.4%. This paper will update previous studies by using more recent data to analyze salary discrimination in the NBA. I find that nonwhite players earn approximately $83,000 more than white players for the 2008-2009 season. Yet when I control for player productivity and other variables, I find a significant white premium of approximately 24.5%. I also find that customer discrimination is not evident in the NBA for the 2008- 2009 season

    An interpretation of the history of religious education in Sweden

    Full text link
    This item was digitized by the Internet Archive

    Platelet surface receptor glycoprotein VI-dimer is overexpressed in stroke: The Glycoprotein VI in Stroke (GYPSIE) study results.

    Get PDF
    OBJECTIVES: Platelet activation underpins thrombus formation in ischemic stroke. The active, dimeric form of platelet receptor glycoprotein (GP) VI plays key roles by binding platelet ligands collagen and fibrin, leading to platelet activation. We investigated whether patients presenting with stroke expressed more GPVI on their platelet surface and had more active circulating platelets as measured by platelet P-selectin exposure. METHODS: 129 ischemic or hemorrhagic stroke patients were recruited within 8h of symptom onset. Whole blood was analyzed for platelet-surface expression of total GPVI, GPVI-dimer, and P-selectin by flow cytometry at admission and day-90 post-stroke. Results were compared against a healthy control population (n = 301). RESULTS: The platelets of stroke patients expressed significantly higher total GPVI and GPVI-dimer (P<0.0001) as well as demonstrating higher resting P-selectin exposure (P<0.0001), a measure of platelet activity, compared to the control group, suggesting increased circulating platelet activation. GPVI-dimer expression was strongly correlated circulating platelet activation [r2 = 0.88, P<0.0001] in stroke patients. Furthermore, higher platelet surface GPVI expression was associated with increased stroke severity at admission. At day-90 post-stroke, GPVI-dimer expression and was further raised compared to the level at admission (P<0.0001) despite anti-thrombotic therapy. All ischemic stroke subtypes and hemorrhagic strokes expressed significantly higher GPVI-dimer compared to controls (P<0.0001). CONCLUSIONS: Stroke patients express more GPVI-dimer on their platelet surface at presentation, lasting at least until day-90 post-stroke. Small molecule GPVI-dimer inhibitors are currently in development and the results of this study validate that GPVI-dimer as an anti-thrombotic target in ischemic stroke.British Heart Foundation, SP/13/7/30575, Dr Stephanie M Jung British Heart Foundation, RE/13/6/30180, Dr Isuru Induruwa NIHR CL to Dr Isuru Induruw

    Clinical features and surgical outcomes of complete transposition of the great arteries

    Get PDF
    PurposeThis single-center study aimed to assess the clinical features and surgical approaches and outcomes of complete transposition of the great arteries (TGA).MethodsTGA patients who had undergone surgical correction at the Kyungpook National University Hospital from January 2000 to December 2010, were retrospectively evaluated for patient characteristics, clinical manifestation, preoperative management, intraoperative findings, postoperative progress, and follow-up status.ResultsTwenty-eight patients (17 boys and 11 girls, mean age=10.6±21.5 days) were included and were categorized as follows: group I, TGA with intact ventricular septum (n=13); group II, TGA with ventricular septal defect (VSD, n=12); and group III, TGA/VSD with pulmonary stenosis (n=3). Group I underwent the most intensive preoperative management (balloon atrial septostomy and prostaglandin E1 medication). Group II showed the highest incidence of heart failure (P<0.05). Usual and unusual coronary anatomy patterns were observed in 20 (71%) and 8 patients, respectively. Arterial and half-turned truncal switch operations were performed in 25 and 3 patients (Group III), respectively. Postoperative complications included cardiac arrhythmias (8 patients), central nervous system complications (3 patients), acute renal failure (1 patient), infections (3 patients), and cardiac tamponade (1 patient), and no statistically significant difference was observed between the groups. Group II showed the mildest aortic regurgitation on follow-up echocardiograms (P<0.05). One patient underwent reoperation, and 1 died. The overall mortality rate was 4%.ConclusionOur study showed favorable results in all the groups and no significant difference in postoperative complication, reoperation, and mortality among the groups. However, our results were inadequate to evaluate the risk factors for reoperation and mortality owing to the small number of patients and short follow-up duration

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior

    Get PDF
    Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a ∼475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs

    Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

    Get PDF
    Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+^{+} monocytes, CD16+^{+} neutrophils, and naive CD4+^{+} T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis\textit{cis}-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.This work was predominantly funded by the EU FP7 High Impact Project BLUEPRINT (HEALTH-F5-2011-282510) and the Canadian Institutes of Health Research (CIHR EP1-120608). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 (BLUEPRINT), the European Molecular Biology Laboratory, the Max Planck society, the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 and Spanish National Bioinformatics Institute (INB-ISCIII) PT13/0001/0021 co-funded by FEDER "“Una Manera de hacer Europa”. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship, M.F. was supported by the BHF Cambridge Centre of Excellence [RE/13/6/30180], K.D. is funded as a HSST trainee by NHS Health Education England, S.E. is supported by a fellowship from La Caixa, V.P. is supported by a FEBS long-term fellowship and N.S.'s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510) and the NIHR BRC. The Blood and Transplant Unit (BTRU) in Donor Health and Genomics is part of and funded by the National Institute for Health Research (NIHR) and is a partnership between the University of Cambridge and NHS Blood and Transplant (NHSBT) in collaboration with the University of Oxford and the Wellcome Trust Sanger Institute. The T-cell data was produced by the McGill Epigenomics Mapping Centre (EMC McGill). It is funded under the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) by the Canadian Institutes of Health Research and by Genome Quebec (CIHR EP1-120608), with additional support from Genome Canada and FRSQ. T.P. holds a Canada Research Chair
    corecore